Logo ArcelorMittal
Search Close

Stainless steels

Scroll down to explore
  • Our expertise
  • Useful documents
  • Our solutions
  • Nickel-based Alloys
  • Super-austenitics
  • Duplex (austenitic ferritic)
  • Specialties
  • Austenitic
  • Heat resistant alloys
  • Ferritic Martensitics and Precipitation Hardening stainless

Our expertise

  • EAF route with careful selection of raw materials to produce high purity steel.
  • Fine tuned secondary metallurgy with vacuum and degassing processes (AOD, VOD) to achieve high cleanliness steels.
  • Heavy and wide quarto plates produced by continuous casting or bottom poured ingot with a comprehensive dimensional range.
  • A dedicated world-class research and development center providing technical support and developing new products to meet market needs.
  • A global sales network guaranteeing single point of contact in your geographical area and being your representative with our mills.
  • A web-based customer service providing access to order confirmations, invoices, order status and mill test certificates.

Useful documents

Our solutions

Nickel-based Alloys

  • Nickel based alloys present ultra high corrosion resistance properties in severe conditions such as H2S environments


  • Superaustenitic stainless steels exhibit great resistance to corrosion and high strength thanks to their high molybdenum, nitrogen and nickel contents. These steels approach the performance of highly corrosion resistant nickel based alloys at a significant lower cost.

Duplex (austenitic ferritic)

  • Compared to equivalent austenitic grades duplex shows very attractive features at lower alloy cost : – higher resistance to Stress Corrosion Cracking, – higher mechanical properties.


  • These stainless steels are designed for specific applications :
  • low ferrite content grades for amagnetic properties and/or high corrosion resistance
  • borated stainless steels for neutronic radiation shielding
  • optimized chemical composition with low residual elements, addition of specific alloying elements, and homogeneous microstructure to enhance the corrosion resistance in nitric, sulfuric or urea-carbamate media


  • These are the most popular of the stainless steels because of their ductility, ease of working and good corrosion resistance; they are derived from the 18Cr-8Ni stainless steel Type 304. The other grades are developed to provide special corrosion resistance properties by adding Molybdenum, Chromium and/or decreasing Carbon content (L grades).
  • Addition of stabilizing elements like Titanium or Niobium (Columbium) provides better weldability. Addition of Nitrogen increases mechanical strength as for grades 304N or 316N.
  • They are also available in the heat resistant version (H grades) with a higher Carbon content and coarser grain size to improve creep resistance. They can be used up to 870°C /1600°F.
  • They also exhibit good ductility and toughness even at cryogenic temperatures.
  • All are essentially nonmagnetic in the annealed condition, although some may become slightly magnetic by cold working.

Heat resistant alloys

  • Heat resistant alloys thanks to nickel, silicon, aluminum and rare earth materials are creep resistant and resist to high temperature corrosion (600°C-1100°C).

Ferritic Martensitics and Precipitation Hardening stainless

  • Ferritic stainless steels: These grades are characterized by a very low content of nickel (less than 1%). Their low carbon content prevents hardening by heat treatment, their pitting corrosion reistance is equivalent to 300 series.
  • Martensitic stainless steels: Basic corrosion resistant grades (Cr~13%), the higher carbon content compare to ferritic allow them to be hardened by heat treatment while still being fairly weldable.
  • Precipitation hardening stainless steels: The addition of aluminum, copper or aluminium in these chromium-nickel grades allow them to be hardened by a solution and aging heat treatment.

Stainless Steel equivalences table

Nickel Based Alloys

UR 600N06600   –2.4816    –   –   –
UR 601N06601   –2.4851 NiCr23FeAl   –   –
UR 825N08825   –2.4858 NiCr21MoNCF 625   –
UR 625N06625   –2.4856 NiCr22Mo9NbNCF 825   –
HASTELLOY® C-22®N06022   –2.4602 NiCr21MoCr14W    –   –
HASTELLOY® C-276N10276   –2.4819    –   –   –


UR 904 N08904904 L1.4539  X1NiCrMoCu25-20-5SUS 317 J5L   –
UR 28N08028   –1.4563  X1NiCrMoCu31-27-4   –   –
UR 254S31254   –1.4547  X1CrNiMoCuN20-18-7   –      –  
UR 367N08367   –   –    –   –
UR 926N08926   –1.4529 X1NiCrMoCu25-20-7   –   –
UR 64   –   –1.3964 –   –   –
UR 4565S34565   –1.4565  X2CrNiMnMoN25-18-6-5   –   –
UR 31N08031   –1.4562 X1NiCrMoCu32-28-7   –   –
UR 66S31266   –1.4659  X1CrNiMoCuNW24-22-6   –   –


UR 2202S322021.4062 X2CrNiN22-2   –  –
UR 2304 S323041.4362 X2CrNiN23-4   –   –
UR 2205S318031.4462 X2CrNiMoN22-5-3SUS 329 J 3L   –
UR 2205S318031.4462 X2CrNiMoN22-5-3
UR 2205MoS31803/S322051.4462 X2CrNiMoN22-5-3  
UR 2205+ S31803/S322051.4462 X2CrNiMoN22-5-3  
UR 2507 S327501.4410  X2CrNiMoN25-7-4
UR 2507CuS32550/S325201.4507  X2CrNiMoCuN25-6-3
UR 2507WS327601.4501  X2CrNiMoCuWN25-7-4


NUCL 304L304 L Mod(1.4307) (X2CrNi18-9)   –   –
NUCL 347S34700347(1.4550) X6CrNiNb18-10)SUS 34708Ch18N12B
NUCL 304 B4304 B4 1.4306 Bor    –   –   –
NUCL 316L S31603316 L (1.4432) X3CrNiMo17-13-3   –06Ch17N13M3-WD
UREA 316 LS31603316 L 1.4435  X2CrNiMo18-14-3SUS 316L03Ch17N14M3
UREA 310Mo LNS31050310 Mo LN1.4466  X1CrNiMoN25-22-2   –   –
UR 16   –304 L NAG(1.4306)    –   –   –
UR 65   –(310 L NAG)1.4335  X1CrNi25-21   –   –
UR S1S30600   –1.4361  X1CrNiSi18-15-4SUS XM 15 J1   –
UR SX   –   –   –    –   –   –


UR 304HS30400304 (H)1.4301 X5CrNi18-10SUS 30408Ch18N10
UR 304LS30403304 L1.4307 X2CrNi18-9SUS 304 L   –
UR 304LS30403304 L1.4306 X2CrNi19-11SUS 304L03Ch18N11
UR 321S321003211.4541 X6Cr Ni Ti 18-10SUS 32106Ch18N10T
UR 347S347003471.4550 X6CrNiNb18-10SUS 34708Ch18N12B
UR 304NS30451304N1.4315 X5 Cr Ni N 19-9SUS 304 N1   –
CryElso 201LNS20153201 LN1,4371 X2CrMnNiN17-7-5   –   –
UR 304LNS30453304 LN1.4311 X2CrNiN18-10SUS 304 LN   –
UR 316HS31609316 H1.4401 X5CrNiMo17-12-2SUS 31608Ch16N11M3
UR 316LS31603316 L1.4404 X2CrNiMo17-12-2SUS 316 L   –
UR 316TiS31635316 Ti1.4571 X6CrNiMoTi17-12-2SUS 316 Ti08Ch16N11M3T
UR 316NbS31640316 Cb1.4580 X6CrNiMoNb17-12-2   –08Ch16N13M2B
UR 316S316003161.4436 X3CrNiMo17-13-3SUS 316   –
UR 316LMoS31603316 L1.4432 X2CrNiMo17-12-3   –06Ch17N13M3-WD
UR 316LMoS31603/J92800316 L1.4435 X2CrNiMo18-14-3SUS 316L03Ch17N14M3
UR 316LNS31653316 LN1.4429 X2CrNiMoN17-13-3SUS 316 LN   –
UR 317LS31703317 L1.4438  X2CrNiMo18-15-4SUS 317L   –
UR 317LNS31753317 LN1.4434  X2CrNiMoN18-12-4SUS 317 LN   –
UR 317LMNS31726317 LMN1.4439  X2CrNiMoN17-13-5   –   –
UR XM19S20910XM 19   –    –   –   –
UR XM 29S24000XM 29 –    –   –   –

Heat resistant alloys

SIRIUS 4828 S309003091.4828 X15CrNiSi20-12SUS 309TB20Ch20N14S2
SIRIUS 4835 S30815   –1.4835 X9CrNiSiNCe21-11-2   –   –
SIRIUS 309 SS30908309S1.4833 X6CrNi23-14SUS 309 S   –
SIRIUS 310 SS31009310S1.4845 X8CrNi25-21SUS 310 S10Ch23N18; 20Ch23N18
SIRIUS 314S314003141.4841 X15CrNiSi25-21SUS 310TB20Ch25N20S2
SIRIUS 800 (H).(H+)N08800/810/811   –1.4876 X10NiCrAlTi32-21NCF 800/800TB/800TP   –


SOLEIL A2S410004101.4006 X12Cr13SUS 41012Ch13; 15Ch13L
SOLEIL A4S420004201.4021 X20Cr13SUS 420J120Ch13
SOLEIL 4003S40977   –1.4003 X2CrNi12   –   –
SOLEIL B2S41008410S1.4000 X6Cr13SUS 40308Ch13
SOLEIL B3S405004051.4002 X6CrAI13SUS 405   –
SOLEIL B4S430004301.4016 X6Cr17SUS 43012Ch17
SOLEIL C5S41500   –1.4313 X3CrNiMo13-4SUS Ti6NM   –
VIRGO 39   –   –1.4418  X4CrNiMo16-5-1   –   –
VIRGO 17.4 PHS174006301.4542 X5CrNiCuNb16-4SUS 630   –
VIRGO 15.5 PHS15500XM12   –   –   –

Associated industries

Defense & security
Learn more
Chemicals and Petrochemicals
Learn more
Construction and infrastructure
Learn more
Oil and Gas
Learn more
Power Generation
Learn more
Renewable Energies
Learn more

To go further