

# SOLEIL<sup>™</sup> C5

# SOLEIL<sup>™</sup> C5: A 13Cr 4Ni martensitic stainless steel

**Soleit C5** is a 13% Cr-4% Ni-0.5% Mo martensitic stainless steel. Its nickel content, associated with low carbon ensures better weldability, ductility, impact and fatigue resistance than 13 Cr martensitic grades (410, 420). The alloy has good corrosion resistance to fresh water and performs well in abrasive conditions. It combines high mechanical properties, excellent toughness and weldability.

It is commonly used in turbines and flow control systems in the hydropower industries.

PROPERTIES

### **STANDARDS**

| > EURONORM | EN 1.4313 | X3 Cr Ni Mo 13-4 |
|------------|-----------|------------------|
|            |           |                  |

> ASTM/ASME UNS 41500

# CHEMICAL ANALYSIS - WEIGHT %

### **Typical values**

| С   | Cr | Ni | Мо | Si | Others              |
|-----|----|----|----|----|---------------------|
| .04 | 13 | 4  | .5 | .4 | S = .001 - P = .020 |

# PHYSICAL PROPERTIES

### Density: 7.7 kg/dm<sup>3</sup>

| Interval<br>temperature<br>°C | Thermal<br>expansion<br>(α x10 <sup>-6</sup> K <sup>-1</sup> ) | T<br>°C (°F) | Resistivity<br>(μΩ.cm) | Thermal<br>conductivity<br>(W.m <sup>-1</sup> .K <sup>-1</sup> ) | Specific heat<br>(J.kg <sup>-1</sup> .K <sup>-1</sup> ) | Young modulus<br>E (GPa) | Shear modulus<br>G (GPa) |
|-------------------------------|----------------------------------------------------------------|--------------|------------------------|------------------------------------------------------------------|---------------------------------------------------------|--------------------------|--------------------------|
| 0 - 100                       | 11                                                             | 20 (68)      | 80                     | 26                                                               | 460                                                     | 206                      | 80                       |
| 0 - 200                       | 11                                                             | 200 (392)    | -                      | 27                                                               | 500                                                     | 195                      | 76                       |
| 0 - 400                       | 12                                                             | 400 (752)    | _                      | 28                                                               | 540                                                     | 180                      | 70                       |

# MECHANICAL PROPERTIES

Tensile properties - Minimum guaranteed values

| Tempe | erature | Y.S. | 0.2% | Y.S. | 1%  | U       | ſS      | El |
|-------|---------|------|------|------|-----|---------|---------|----|
| °C    | °F      | MPa  | ksi  | MPa  | ksi | MPa     | ksi     | %  |
| 20    | 68      | 560  | 81   | 580  | 84  | 750-950 | 109-138 | 18 |
| 100   | 212     | 500  | 72   | 520  | 75  | 700-920 | 102-133 | 18 |
| 300   | 572     | 420  | 61   | 440  | 64  | 650-900 | 94-130  | 18 |

Results in the annealed condition (soft material). The grade may be hardened by heat treatment. Minimum 700 MPa (102 ksi) yield strength may be guaranteed.

PROPERTIES

### Impact strength (KV minimum values)

|             | 0%   | 32°F     | 20°C  | 68°F     |
|-------------|------|----------|-------|----------|
| Single      | 60 J | 44 ft.lb | 80 J  | 59 ft.lb |
| Average (5) | 80 J | 59 ft.lb | 100 J | 74 ft.lb |

Typical Charpy V values in the Z direction at room temperature are 80–120 J (59–89 ft.lb). The Charpy–V transition temperature is close to -50°C (-58°F). A value of 50 J mini in the Z direction may be guaranteed even for 100 mm thick plates.

### Typical KV transition curve



Soleil<sup>TM</sup> C5 alloy presents improved toughness properties when compared to ferritic-martensitic grades (AISI 410-420 / EN 1.4000-X6 Cr 13).

### Fatigue properties (indicative results)

Rotating beam fatigue (longitudinal, smooth specimens)  $R_{p0.2}/YS = 640$  MPa.

Fatigue limit 10<sup>7</sup> cycles.

| Air                 | 540 MPa |
|---------------------|---------|
| Synthetic sea water | 380 MPa |

Indicative results.

#### Hardness values - Typical values

| Average (5) | $HV_{10} = 240-320$ | HB = 220-320 |
|-------------|---------------------|--------------|
|-------------|---------------------|--------------|

Hardness varies with heat treatment



# **DELIVERY CONDITIONS**

### SIZE RANGE

|           | Hot rolled plates |  |
|-----------|-------------------|--|
| Thickness | 5 to 150 mm       |  |
| Thickness | 3/16" to 6"       |  |
|           | Up to 3300 mm     |  |
| Width     | Up to 130"        |  |
| Langth    | Up to 12000 mm    |  |
| Length    | Up to 472"        |  |

Formed pieces are available through Industeel France - Chateauneuf Euroform Plant

## PLATE PROCESSING

### STRUCTURE AND HEAT TREATMENT

The chemical composition of Soleil<sup>™</sup> C5 is balanced to obtain a martensitic structure with less than 1 % ferrite after heat treatment. Due to its very low sulfur content, the alloy has a very high cleanliness, improving corrosion resistance and toughness properties. The alloy is generally air or water quenched after heat treatment at 950 - 1050°C (1742 - 1922°F). A tempering treatment is performed in the 600 - 700°C (1112 - 1292°F) range. The alloy is more stable than ferritic stainless steels without nickel additions. As a result the alloy Soleil<sup>™</sup> C5 is less prone to embrittlement effects in the 550 - 300°C (932 - 572°F) temperature range. Embrittlement start after 1000 hours at 400°C (752°F) or 10 000 hours at 300°C (572°F). The steel is magnetic.

## HOT FORMING

Hot forming should be carried out in the temperature range 1100 - 800°C (2012 - 1472°F) followed by air cooling and followed by heat treatment (see above).

### **COLD FORMING**

When performed, a final stress relieving treatment may be requested. Typical temperature range is 580 - 620°C (1076 - 1148°F), for 2 hours.

## PICKLING

If pickling is needed, use the following conditions:

| · F··································· |                                                      |      |  |  |  |
|----------------------------------------|------------------------------------------------------|------|--|--|--|
|                                        | - HNO3 - Nitric acid 36° Bé                          | 10 % |  |  |  |
|                                        | – HF – Hydrofluoric 65°                              | 1 %  |  |  |  |
| (1)                                    | - Water                                              |      |  |  |  |
|                                        | Temperature : 20°C (68°F) - 1-3 hours. A slight      |      |  |  |  |
|                                        | increase of temperature reduces pickling times       |      |  |  |  |
|                                        | - H <sub>2</sub> SO <sub>4</sub> - Sulfuric acid 65° | 10%  |  |  |  |
| (2)                                    | - HNO3 - Nitric acid 36°                             | 0.3% |  |  |  |
|                                        | Temperature 60°C (140°F) - a few min                 | utes |  |  |  |
| (3)                                    | Pickling pastes (follow suppliers'                   |      |  |  |  |
| (3)                                    | recommendations)                                     |      |  |  |  |

After processing or machining, the alloy should be decontaminated using the following bath:

For most application, Soleil™ C5 alloy is delivered in the blasted condition

### WELDING

The nickel addition and the low carbon content improve the weldability of SOLEIL™ C5 compared to 410 type martensitic steels, but precautions must be taken to avoid cold cracking and to improve the toughness of welds:

- > Preheating at 150°C and interpass temperature limited to 200°C -392°F (below the Ms temperature).
- > SMAW welding with basic type electrodes of similar composition; electrodes must be well dried over 250°C.
- SAW welding with a high basicity flux dried before welding.
  Preliminary test is necessary to check mechanical properties in the weld deposit.
- > Post heating: 200°C/392°F 2H and slow cooling under cover.
- > Stress relieving at 600-620°C (1112-1148°F).

SOLEIL<sup>™</sup> C5 can be welded using 309L type fillers, but this will produce joints of lower strength. Consult for details. Final pickling and decontamination are recommended when corrosion resistance properties are required. If needed, consult.



# APPLICATIONS

SOLEIL<sup>™</sup> C5 grade is specially designed for applications requiring high strength, high toughness and medium corrosion resistance properties.

The chromium, nickel and molybdenum additions make the alloy resistant to corrosion in fresh water. Typical applications are hydroelectric turbines and systems (blades, runners, gates, rings, shield plates,...), hydropter wings to fight cavitation by high speed water.

Pierre Petit Tel. +33 6 42 06 00 39 pierre.petit@arcelormittal.com

https://industeel.arcelormittal.com

# YOUR CONTACTS

Industeel France Le Creusot Plant 56 rue Clemenceau F - 71202 Le Creusot Cedex

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.