

UR™ 316LN

UR™ 316LN: A nitrogen containing 316 austenitic stainless steel

UR™ 316LN is a nitrogen alloyed austenitic stainless steel with Mo addition. The addition of nitrogen gives it high mechanical properties and excellent resilience at low temperatures compared to UR™ 316L. Molybdenum improves uniform and localized corrosion resistance, we offer the 2%Mo 1.4406 and the 2.5%Mo 1.4429 grades both are in accordance with AISI 316LN/UNSS31653. Its low carbon content avoids intergranular corrosion, even after welding. UR™ 316LN exhibits an austenitic microstructure, free of deleterious carbide precipitations. The grade contains residual ferrite after solution annealing (1050 - 1150°C /1922-2102°F) and water quenching. Main properties of UR™ 316LN are high ductility, good weldability. It is particularly suitable for the needs of cryogeny and vacuum applications, but also for nuclear, chemicals and petrochemicals, pharmaceutical industry, food industry.

A ferrite free, non magnetic version of the grade has been developed for nuclear physics applications at 4°K.

PROPERTIES

STANDARDS

> EURONORM: EN 1.4406 X2CrNiMoN 17.11.2

EN 1.4429 X2CrNiMoN 17.11.3

> ASTM: A240TP 316LN - UNS S31653

CHEMICAL ANALYSIS - WEIGHT %

Typical values

EN	С	Cr	Ni	Мо		PREN
1.4406	< 0.030	17.5	11	> 2.0		≥ 27
1.4429	< 0.030	17.5	13	> 2.5	0.18	≥ 29

PREN (%Cr + 3.3%Mo + 16%N)

PHYSICAL PROPERTIES

Density: 7950 kg/m³

Interval temperature (°C)	Thermal expansion $(\alpha \times 10^{-6} \text{ K}^{-1})$	T (°C) (°F)	Resistivity (μΩ.cm)	Thermal conductivity (W m ⁻¹ K ⁻¹)	Specific heat (J kg ⁻¹ K ⁻¹)	Young modulus E (GPa)	Shear modulus G (GPa)
20 - 100	16	20 (68)	75	15	500	200	77
20 - 200	16.5	100 (212)	77	16	500	194	75
20 - 300	17	200 (392)	84	17.5	520	186	71
20 - 400	17.5	300 (572)	91	19	530	179	68
20 - 500	18	400 (752)	97	20.5	540	172	65
		500 (932)	102	22	540	165	62
-196	13.5	-196 (-320)		7.5	130		

The alloy is non magnetic in the solution treated condition, very slightly ferromagnetic after cold work.

MECHANICAL PROPERTIES

Tensile properties - After solution annealing heat treatment

		Minimum guaranteed values*							Typical values (10 mm plates)			
°C	°F	YS 0	.2%	YS	1%	UTS		Elongation	YS C	0.2%	Į	JTS
		MPa	Ksi	MPa	Ksi	MPa	Ksi	%	MPa	Ksi	MPa	JTS Ksi >181 - 93 79 73 71 68
-196	-320	600	87	700	101	1150	167	30	>700	>101	>1250	>181
-150	-238	500	73	600	87	1000	D	30	-	_	-	-
-80	-112	380	55	450	65	800	116	30	-	-	-	-
20	68	280	40	320	47	580/780	85	40	355	51	637	93
100	212	211	30	246	36	520	76	-	240	34	540	79
200	392	167	24	198	29	460	67	-	190	27	500	73
300	572	145	21	175	26	440	65	-	160	23	480	71
400	752	135	20	164	24	435	64	-	150	22	460	68
500	932	128	19	158	23	430	63	-	140	21	440	64

^{*} As per EN10088 hot rolled plates. The EN guaranteed values are valid for a thickness from 5 up to 75 mm. (0.20" up to 2.95")

Impact values

Temperature°C (°F)	- 196°C (- 320°F)	20°C (68°F)
KCV (J/cm²) guaranteed	200	250
KCV (J/cm²) typical	250	310

Typical creep strength values

Temperature	600°C (1112°F)		650°C (1202°F)		700°C (1292°F)		750°C (1382°F)	
Time to rupture (h)	10³	104	10³	104	10³	104	10³	104
σR (MPa)	270	210	195	145	150	90	90	65

IN SERVICE CONDITIONS

CORROSION RESISTANCE

Standardized corrosion tests (special request may be discussed)

TEST	OTHER NAME	CORROSION	RESULTS
ASTM A262 A	-	Intergranular	Step or dual structure
ASTM A262 B	STREICHER	Intergranular	<1 mm/year (not sensitized)
ASTM A262 C	HUEY	Intergranular	<1 mm/year (< 0.6 mm for 1.4429)
ASTM A262 E DIN 50914 RCCM	STRAUSS	Intergranular	No cracking after bending
ASTM G48A	-	Pitting	Not recommended (CPT< 15°C - 59°F)
ASTM G48B	ASTM G48	Crevice	Not recommended (CCT< 5°C - 41°F)

The alloy is corrosion resistant in:

- > Diluted sulfuric solutions at moderate temperature
- > Very diluted hydrochloric acid solutions at moderate temperature
- > Middle concentrated phosphoric solutions at low temperature
- > Organic acid solutions at moderate temperature
- > Very polluted urban media
- > Alkaline chloride solutions up to 70°C (158°F)
- > Industrial phosphoric acid (θ < 60°C/140°F, conc < 30% P₂O₅ and Cl⁻ < 300ppm) without abrasion

DELIVERY CONDITIONS

SIZE RANGE

	Quarto plates	Clad plates
Thislenges	5 up to 150 mm	
Thickness	3/16" to 6"	
Width	Up to 3800 mm*	Consult
VVIQLII	Up to 150"	Industeel
Lanath	Up to 16000 mm	
Length	Up to 52.5"	

Indicative dimensional programme - *Width related to thickness, please consult for specific request.

PLATE PROCESSING

HOT FORMING

Hot forming should be carried out in a temperature range of $1150 - 850^{\circ}\text{C}$ ($2102 - 1562^{\circ}\text{F}$). If the final forming temperature falls below 950°C (1742°F) a solution annealing ($1050 - 1150^{\circ}\text{C}$ / $1922 - 2102^{\circ}\text{F}$) is necessary. The cleanliness of the surface is very important (avoid oil contamination). A neutral or slightly oxidising atmosphere is required. Due to the low thermal conductivity, the holding time of temperature may be longer than carbon steel ($\sim 50\%$). Quenching must be fast after forming.

COLD FORMING

The alloy can be cold formed without problem. It may require more powerful equipments than structural steel.

MACHINING

Due to its cold work hardening the alloy is less machinable than structural steel or than a 13%Cr martensitic stainless steel.

				CONDITIONS	
Operation	Tool	Lubrication	Depth of cut mm (inch)	Feed mm/t (inch/t)	Speed m/min (feet/min)
			6 (0.23)	0.5 (0.019)	9 - 13 (29 - 43)
	High speed steel	Cutting oil	3 (0.11)	0.4 (0.016)	14 - 19 (46 - 62)
Turning	31001		1 (0.04)	0.2 (0.008)	20 - 25 (66 - 82)
Turning			6 (0.23)	0.5 (0.019)	55 - 65 (180 - 213)
	Carbide	Dry or cutting oil	3 (0.11)	0.4 (0.016)	70 - 80 (229 - 262)
			1 (0.04)	0.2 (0.008)	80 - 90 (262 - 295)
				Feed	Speed
	High speed steel	Cutting oil	1.5 (0.06)	0.03 - 0.05 (0.0012 - 0.0020)	13 - 17 (43 - 56)
Cutting			3 (0.11)	0.04 - 0.06 (0.0016 - 0.0024)	14 - 28 (46 - 92)
			6 (0.23)	0.05 - 0.07 (0.0020 - 0.0027)	15 - 19 (49 - 62)
			Drill Ø mm (inch)	Feed	Speed
			1.5 (0.06)	0.02 - 0.03 (0.0008 - 0.0012)	8 - 11 (26 - 36)
Drilling	High speed		3 (0.11)	0.05 - 0.06 (0.0020 - 0.0024)	10 - 13 (33 - 43)
Drilling	steel	Cutting oil	6 (0.23)	0.08 - 0.09 (0.0031 - 0.0035)	10 - 13 (33 - 43)
			12 (0.48)	0.09 - 0.10 (0.0035 - 0.0039)	10 - 13 (33 - 43)
				Feed	Speed
Milling profiling	High speed steel	Cutting oil		0.05 - 0.10 (0.002 - 0.004)	8 - 16 (26 - 52)

PICKLING

A nitric hydrofluoric acid bath (10 – 20% HNO3 – 1.5 – 5% HF) at 20 – 60 °C is used for the pickling treatment. A 10 – 20% $\rm H_2SO_4$ – 1.5 – 5% HF pickling bath may also be used. Passivation – decontamination treatments may be performed with a 10 – 20% weight nitric acid solution.

CUTTING

- > Thermal cutting (plasma, thermal sawing...)
- > Mechanical cutting (shearing, stamping, cold sawing...)

After thermal cutting, pickling or grinding are necessary to eliminate the oxide formed layer.

WELDING

UR™ 316LN is readily weldable. All welding processes can be used.

Filler materials

Flactrodo	E316L - 15 or E316L - 16
Electrode	(ASME Sect II - Part C SFA5 - 4)
Wire	ER 316L (ASME Sect II - Part C SFA 5 - 9)

A post weld heat treatment is not necessary. Pre heating and post heating are not necessary. 200°C (392°F) is the maximum interpass temperature. Post weld pickling and rinsing is recommended.

APPLICATIONS

The main applications are:

- > Cryogeny, Liquid gas production and storage vessels
- > Chemical, petrochemical and pharmaceutical industries
- > Food and beverage industry
- > Chemical tankers
- > Nuclear physics applications

YOUR CONTACTS

Didier Paul
Tel. +33 6 19 28 29 31
didier.r.paul@arcelormittal.com

https://industeel.arcelormittal.com

Industeel Belgium 266, rue de Châtelet B - 6030 Marchienne-au-Pont

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.