Industeel

CryElso[™] 203 Cryogenic steel

Special low alloy Ni-steel for low temperature applications

CryElso[™] 203 is a low-alloyed Ni steel, designed for low temperature applications and requiring a high level of toughness. Its high Charpy impact values at low temperature (-101°C) are combined with good tensile properties and mainly with an ultra low Nil-Ductility Temperature (Drop Weight Tests). The crack propagation resistance of the material is therefore excellent.

CryElso[™] 203 is manufactured via the electric arc furnace (EAF) with dephosphoration, ladle refining and vacuum degassing to provide reproducible, clean and homogeneous steel.

The chemistry of **CryElso[™] 203** has been carefully adapted to combine high mechanical properties and excellent weldability.

This material may be used in all applications requiring low temperature impact values such as:

- Compressors housings
- Nuclear waste containers
- Liquid gas storage tankers...

Properties

Standards

CryElso[™] 203 is compliant with:

- ASTM / ASME A / SA-203 type D (UNS K31718)
- ASTM / ASME A / SA-203 type E (UNS K32018)
- ASTM / ASME A / SA-203 type F
- EN 10028-4 12Ni14 (1.5637)

For other standard compliancy, please consult. Multiple certifications are possible on request.

Tensile properties

Guaranteed transverse tensile properties at room temperature. (Measured on every plates)

Standard	Plate thickness (mm)	Yield Strength (MPa)	Ultimate Tensile Strength (MPa)	Minimum Elongation (%)
EN 10028-4 12Ni14	≤ 30	≥ 355	490-640	22
	> 30	≥ 345	490-040	
A/SA 203 grE		≥ 275	485-620	21

CVN Impact Properties and NDT (Drop Weight Tests)

Specially designed for very low temperature impact values, **CryElso™ 203** gives impact energies above 100J in transverse orientation at -101°C. This toughness level is achieved also for the thickest plates (up to 450 mm).

The Nil-Ductility Transition Temperature (NDTT) has been determined using Drop Weight Test (i.e. Pellini) procedure in accordance with ASTM E208. Stress relieved testing coupon at 590°C during 5h45mn + air cooling provides NDTT at - 80°C.

Chemical composition

Ladle analysis - Expressed in weight percent (wt%)

С	Mn	Si	Р	S	Ni	V
<0.15	<0.80	<0.35	<0.015	<0.002	3.25-3.75	≤0.05

Welding

For this grade, it is quite difficult for a weld metal to achieve both low temperature toughness (-101°C) as well as high tensile properties. Hence two kinds of filler materials can be used, homogeneous filler or Nickel-Base filler, depending on mechanical properties balance to be achieved.

	Classification of welding consummables	SMAW	GMAW	FCAW	SAW (Wire + Flux)
Homogeneous	AWS	SFA5.5: E 7018-C2L H4		SFA5.36: E 81 T15-M21A8-Ni3-H4	<mark>SFA5.23:</mark> F 7A15 E Ni3-Ni3
	EN	EN ISO 2560-A: E 42 6 3Ni B 3 2 H5		<mark>EN ISO 17632-A:</mark> T 46 6 3Ni M M21 1 H5	EN ISO 14171-A: S 42 8 FB S2Ni3 H5 EN ISO 14174: S A FB 1 55 AC H5
Ni alloy	AWS	SFA5.11: E NiCrMo-3	SFA5.14: ER NiCrMo-3	SFA5.34: E NiCrMo3 T1-4	SFA5.14: ER NiCrMo-3
	EN	<mark>EN ISO 14172:</mark> E Ni 6625	EN ISO 14172: S Ni 6625	EN ISO 12153: T Ni 6625 P M21 2	EN ISO 14172: S Ni 6625 EN ISO 14174: S A AF2 5643 AC H5

Delivery Conditions

Plates

CryElso™ 203 can be produced in thicknesses from 5 mm and up to 450 mm (3/16" up to 18"). Maximum plate weight: 20 tons per unit for continuous casting route and up to 80+ tons for ingot route.

Prefabrication

By special agreement, prefabricated pieces can be delivered according to drawings. The following operations can be performed: beveling, bending, rolling of shell to radius, cutting to shape, fabrication of stiffeners and annular plates, pre-welding. (*Non exhaustive list, please consult*)

Industeel Belgium Charleroi Plant 266, rue de Chatelet B - 6030 Marchienne-au-Pont industeel.arcelormittal.com

Your contact

Valéry NGOMO Tel. +33 6 10 49 59 48 valery.ngomo@arcelormittal.com

Technical data and information are to the best of our knowledge at the time of editing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.