

CarElso™ 60/65 HIC SA-516 gr. 60/65

CarElso[™] 60/65 HIC: HIC Resistant Steel for Pressure Equipment in Sour Service

CarElso™ 60/65 HIC is a special normalised CMn steel adapted for pressure equipment. CarElso™ 60/65 HIC is manufactured via the electric arc furnace with desulfurisation, dephosphorisation, ladle refining and vacuum degassing to provide a reproducible, clean and homogeneous steel.

The use of special steelmaking practice imparting high steel cleanliness gives CarElsoTM 60/65 HIC excellent resistance to wet H₂S cracking such as HIC. This steel also displays excellent weldability and toughness properties.

This steel is particularly suitable for pressure equipment in refinery applications in sour service conditions, where wet H₂S corrosion can be a problem (e.g. separators, exchangers). This steel is particularly suitable for pressure equipment in refinery applications in mild sour service conditions, where wet H₂S corrosion can be a problem (e.g. separators, exchangers).

PROPERTIES

STANDARDS

> EN 10028 - 3	P 275 (NH - NL1 - NL2)
> ASTM	A 516 gr. 60 / A 516 gr. 65
> ASME II Part A	SA 516 gr. 60 / SA 516 gr. 65
> JIS G 3118	Gr. SGV 410

Please consult for multiple certification

CHEMICAL ANALYSIS - WEIGHT %

С	Mn	Si	Р	S	Ni	Cr	Мо	Cu
≤ 0.20	0.85 - 1.20	0.15 - 0.40	≤ 0.008	≤ 0.002	≤ 0.4	≤ 0.30	≤ 0.12	≤ 0.20

Ceq. $\leq 0.39\%$ for grade 60 and Ceq. $\leq 0.41\%$ for grade 65, thickness ≤ 105 mm (≤ 4 inches). Please consult for higher thickness.

(Ceq (%) = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15).

PROPERTIES

MECHANICAL PROPERTIES

Typical transverse tensile values at room temperature after PWHT Guaranteed values as per applicable National Standard

	YS (MPa/ksi)	TS (MPa /ksi)		Elongation%
	Min	Min	Max	Min
t < 35 mm	275 / 40		550 / 80	24
$35 < t \le 50 \text{ mm}$	265 / 38			24
50 < t ≤ 70 mm	255 / 37	115/60		23
70 < t ≤ 100 mm	235 / 34	415 / 60		
100 < t ≤ 150 mm	225 / 33			23
150 < t ≤ 250 mm	220/32			

Plate soundness guaranteed to ultrasonic levels determined by ASTM A 578 level B or EN 10160 – S1E2.

CarElso[™] 60/65 HIC guarantees reduction in area in through – thickness tensile testing $Z\% \ge 35\%$ average/25% mini as per ASTM A770 / EN 10164 (testing an added extra). Guaranteed high temperature tensile properties as per EN 10028 – 3 P275 (NH – NL1 – NL2).

IMPACT PROPERTIES

Transverse Charpy toughness values of 20J average / 14J minimum can be guaranteed down to - 46 °C / - 50 °F for plates \leq 150 mm for the PWHT conditions given above. Please consult for higher thickness and other impact requirements or PWHT conditions.

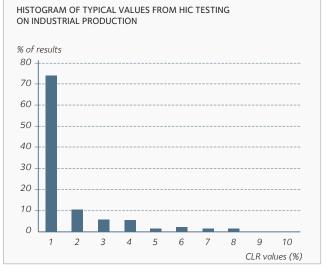
HIC RESISTANCE

CarElso[™] 60/65 HIC is a reproducible and clean steel with strict limits on impurity elements, giving excellent resistance to Hydrogen – Induced Cracking (HIC). The mill – certified HIC guarantees on plate are given below. For other acceptance criteria, please consult.

HIC testing according to NACE TM0284 solution A (pH3). Average value of all specimens.

	CLR (%)	CTR (%)	CSR (%)
HIC 1	5	1.5	0.5
HIC 2	10	3	1
HIC 3	15	5	1.5

This excellent level of HIC resistance requires extra low sulfur and oxygen contents in order to reduce the size and number of sulfide and oxide inclusions.


These inclusions are known initiation sites for HIC cracks. **The ultra – low sulfur and oxygen contents** given below mean that additional sulfide shape control measures, such as additional calcium treatment, are not necessary.

In addition, **a low phosphorus content** is also crucial to reduce the risk of cracking in microsegregated areas. It also results in a less – banded microstructure.

Typical and guaranteed impurity levels necessary to provide excellent HIC resistance

Impurity Levels	Typical	Maximum
Р	0.005%	≤ 0.008%
S	0.001%	≤ 0.002%
[0]	10 ppm	≤ 20 ppm

H₂S testing conditions (for example SSC testing according to NACE TM0177) are available upon request.

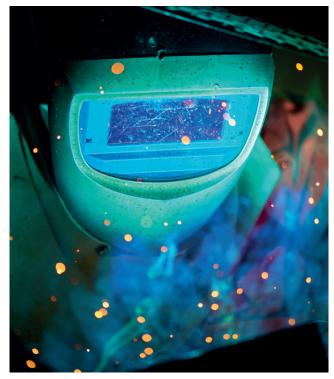
PLATE PROCESSING

HEAT TREATMENT

Normalising treatment. PWHT 600 °C \pm 10 °C / 1120 °F \pm 20 °F during 2 minutes per mm or 1 hour per inch. For other requirements, please consult.

FORMING

Cold forming (+ stress relief for high strains) or hot forming can be applied:


> cold forming (< 500°C/930°F): to be followed by Post - Weld Heat Treatment (PWHT)

> hot forming (900 - 1100 °C/1650 - 2010 °F): to be followed by complete heat treatment + PWHT

Please contact us for full heat treatment details.

WELDING CONDITIONS

The reduced carbon equivalent of CarElso $^{\rm M}$ 60/65 HIC means that under typical industrial conditions, pre-heating is not required.

HAZ PROPERTIES

In H₂S service, it is necessary to limit the maximum HAZ hardness to ≤ 22 HRC or ≤ 248 Hv10 in order to reduce the risk of Sulfide Stress Cracking (SSC). CarElsoTM 60/65 HIC has been designed to comply fully with these limits imposed by NACE Standard MR 0175/ISO 15156. In order to control the maximum HAZ hardness, the carbon equivalent must be limited, ideally to $\leq 0.43\%$, and microalloying additions should be avoided for normalised steels. CarElsoTM 60/65 HIC, with a carbon equivalent $\leq 0.39\%$, easily meets these requirements, and the hardness limit can be met under a wide range of welding conditions.

FILLER MATERIALS

Consumables used for the welding of CarElso™ 60/65 HIC must correspond to the following standards:

	SMAW	GMAW	FCAW	SAW Wire + Flux
AWS	A5 - 5	A5 - 18	A5 - 20	A5 - 17
AVV S	E 70 xx	ER 70 S – x	E 7xT5 – x	F7P4 – Exxx
		EN 440	EN 758	EN 756 / EN 760
EN	E 42 X X X H5	G 42 X X	T 42 X X H5	S 42 X X

PLATE PROCESSING

A non - exclusive list of suitable filler materials is given hereafter:

	SMAW	GMAW	FCAW	SAW	
	SIVIAW	GINIAW	FCAW	Wire	Flux
BÖHLER	Fox Ev 50	EM K7		EM S3	
ESAB	OK 48.00	OK 12.51	OK 15.00	OK 15.00S	OK 10.71
LINCOLN	Excalibur 7018	SuperArc L - 56	Outershield 75C	Lincolnweld L - 56	880M
OERLIKON	TENACITO	CARBOFIL 1	FLUXOFIL 31	OE - S3	OP122
SAF	SAFDRY 58	NERTALIC 70A	SAFDUAL 200	AS 36	AS 462
T – PUT	Phoenix SH G K 70	Union K56	Union BA70	Union S3	UV 421 TT

This list of filler materials has been determined according to suppliers' data. Please confirm this choice with your supplier.

APPLICATIONS

CarElso^M 60/65 HIC is suitable for pressure vessels where H₂S is present, such as processing equipment in the oil and gas industry. It can also be provided as clad plate, with cladding in 304L, 316L, 904L, 625...

Valéry Ngomo

Tel. +33 4 77 75 21 04 valery.ngomo@arcelormittal.com

Patrick Toussaint Tel. +32 71 44 16 27

patrick.toussaint@arcelormittal.com

http://industeel.arcelormittal.com

YOUR CONTACTS

Industeel France Châteauneuf Plant - BP 368 F - 42803 Rive de Gier Cedex Industeel Belgium 266, rue de Châtelet B - 6030 Marchienne-au-Pont

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.