

UR™ 825

UR™ 825

UR™ 825 is an austenitic Ni – Fe – Cr – Mo – Cu nickel based alloy developed to resist corrosion in very aggressive media. The high level of nickel, molybdenum and copper induces an improvement of the corrosion resistance in reducing environment compared to standard stainless steels.

PROPERTIES

STANDARDS

> EURONORM:	EN 2.4858	Ni Cr21 Mo
> ASTM:	UNS N08825	
Specification		
> ASTM:	B 424	
> ASME:	SB 424	

CHEMICAL ANALYSIS - WEIGHT %

Typical values

С	Mn	Si	Cr	Ni	Мо	Cu	Ti
< 0.030	0.3	0.3	23	40	3	2.0	< 1

PHYSICAL PROPERTIES

Density: 8.14 kg/dm³ - 0.294lb/in³ Melting range: 1370 - 1400°C (2500 - 2550°F) Permeability at 20°C/68°F (RT): 1.004 Magnetic Permeability: < 1.02

Interval temperature °C (°F)	Thermal expansion (α x10 ⁻⁶ K ⁻¹)	T °C (°F)	Resistivity (μΩ.cm)	Thermal conductivity (W.m ⁻¹ .K ⁻¹)	Young modulus E (GPa)	Shear modulus G (GPa)
0 - 100 (32 - 212)	14.0	20 (68)	112	11	195	75
0 - 200 (32 - 392)	14.9	100 (212)	114	12	191	73
0 - 400 (32 - 762)	15.9	200 (392)	118	14	185	70

PROPERTIES

IN SERVICE CONDITIONS

MECHANICAL PROPERTIES

Tensile properties - Minimum values

°C	Rp 0.2 MPa	Rm MPa	°F	YS 0.2% ksi	UTS ksi	Elongation %
20	300	640	68	43	93	42
100	260	585	212	38	85	40
200	230	560	392	33	81	40
300	219	552	572	32	80	40
400	205	545	752	30	79	40
600	180	460	1112	26	67	40

ISO V – notch impact toughness. Average values at RT: longitudinal \geq 150 J/cm² – transverse \geq 100 J/cm²

CORROSION RESISTANCE

Uniform corrosion in acids

- > Sulfuric acid: UR[™] 825 is highly resistant to sulfuric acid (all concentrations) at temperatures below 65°C (150°F) and until boiling temperature for concentration to 40%. Its corrosion resistance is enhanced by the presence of oxidizing salts.
- > Phosphoric acid: UR[™] 825 well resists to pure phosphoric acid until boiling temperature for concentrations up to 85%.
- > Nitric acid: UR[™] 825 has a good behavior in nitric acid to concentrations up to 65%. This behavior is lower in the presence of fluorhydric acid.
- > Chlorhydric acid: UR™ 825 is susceptible to corrosion when the chlorhydric acid concentration is higher than 20%.

Stress corrosion cracking

The high nickel content of UR^{M} 825 provides the material with excellent stress corrosion cracking resistance in halide-containing solutions such as CaCl₂ and NaCl. It also exhibits very good cracking resistance in environments containing CO₂ and H₂S mainly encountered in the oil & gas industry. That is why UR^M 825 is today widely used in oil & gas production systems for a variety of applications.

Localized corrosion

The chromium and molybdenum content of 825 provides a pitting corrosion resistance higher than that of the austenitic UR[™] 316L. For this reason this alloy can be utilized in high chloride environments such as seawater. However, in such applications, UR[™] 825 does not provide the same levels of resistance as 6%Mo grades and UR[™] 625. UR[™] 825 has a limited resistance to crevice corrosion.

DELIVERY CONDITIONS

SIZE RANGE

	Hot rolled plates	Cold rolled plates	Clad plates	
Thickness	5 to 120 mm	2 to 14 mm	6 to 120 mm	
THICKNESS	3/16" to 4.7"	5/64" to 5/8"	1/4" to 4.7"	
Width	Up to 3000 mm	Up to 2200 mm	Up to 3000 mm	
	Up to 126"	Up to 86.6"	Up to 126"	
Length	Up to 12000 mm	Up to 8250 mm	Up to 14000 mm	
	Up to 472"	Up to 325"	Up to 551"	

Other sizes are available on request.

PLATE PROCESSING

HOT FORMING

Hot forming operations can be performed between 1180 and 850°C (2150 - 1560°F). After hot forming, a stabilization heat treatment at about 950°C (1740°F) is recommended. It has to be followed by a water cooling or rapid air cooling.

COLD FORMING

UR[™] 825 alloy can be cold formed by classical methods: folding, profiling, stamping, fluoturning, drawing. Its work hardening rate is less than for austenitic stainless steels. An intermediate heat treatment (annealing) can be necessary during cold forming operations to restore the ductility of the material.

HEAT TREATMENT

To optimize corrosion resistance behavior, and particularly to avoid any intergranular corrosion risk, softening and stabilizing treatments has to be done about 950 - 970°C (1740 - 1780°F). Cooling has to be as rapid as possible (water or rapid air cooling).

WELDING

UR^M 825 has improved weldability. It has low sulfur and phosphorus contents in order to improve the hot cracking resistance of its heat affected zone. UR^M 825 can be readily welded by conventional processes (SMAW, GMAW, FCAW, GTAW and SAW). Preheating is not required and interpass temperature must be limited to 140°C (284°F). The heat input must be controlled (below 15 kJ/cm) and post - heating is not needed. Post welding heat treatment is not necessary and can be detrimental for the material properties if the temperature or cooling rate is too low. For submerged arc welding process (SAW), it is recommended to use small wire diameter (1.6 to 2.4 mm) to limit the heat input.

Filler materials to be used have a similar chemical composition to UR^{TM} 625:

> E NiCrMo - 3 (AWS A5.11) for electrodes

> ER NiCrMo - 3 (AWS A5.14) for wires Basic electrodes and fluxes shall be used.

MACHINING

UR™ 825 alloys can be machined as well as other Nickel based alloys. The following table gives some indications about capabilities:

Turno of			CUTTING PARAMETERS			
Type of machining	Tool	Lubrication	Depth of cut			Speed
			mm	mn		mn
	High speed steel	Soluble	6	0.5		13 - 18
	type AFNOR 2 – 9 – 1 – 8 or	or entire cutting oil	3	0.4		20 - 25
Turning	9 - 3 - 3 - 10		1	0.2		26 - 31
Idining	Carbide		6	0.	5	75 - 85
		Dry or cutting oil	3	0.4		90 - 100
	type ISO P10 or P30		1	0.2		110 - 120
	Width cut	Feed		Speed		
			mm	mn		mn
	High speed steel type AFNOR 2 - 9 - 1 - 8	Soluble or entire cutting oil	1.5	0.03 - 0.005		20 - 25
Cutting			3	0.04 - 0.06		21 - 26
	or 9 - 3 - 3 - 10		6	0.05 - 0.07		22 - 27
			Drill dia. (mm)	Feed mm		Speed mn
	High speed steel		1.5			
Drilling	type AFNOR 6 - 5 - 2 - 5 or 9 - 3 - 3 - 10 or 2 - 9 -	Soluble	3			
Drining		or entire cutting oil	6			
	1 - 8		12			
					Speed m per mn)	
Milling profiling	High speed steel type AFNOR 2 - 9 - 1 - 8	Soluble or entire cutting oil	0.005-0.10		12-22	

APPLICATIONS

This grade is mainly used for construction vessels, tubes, forgings or sheets used in seawater, sulphuric and nitric acids (particularly for pickling vessels), phosphoric acid and other aggressive media.

Pierre Petit Tel. +33 6 42 06 00 39 pierre.petit@arcelormittal.com

https://industeel.arcelormittal.com

YOUR CONTACTS

Industeel France Le Creusot Plant 56 rue Clemenceau F - 71202 Le Creusot Cedex

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.