

CryElso™ 9Q

CryElso[™] 9Q: A steel for Pressure Equipment designed for extra low temperature service

CryElso™ 9Q is an alloyed steel grade containing 9% nickel intended for the fabrication of Liquefied Natural Gas storage tanks and welded pressure vessels designed for extra low temperature service. **CryElso™ 9Q** is a Quenched and Tempered grade, to provide better tensile and toughness properties. **CryElso™ 9Q** is manufactured via the electric arc furnace basic process, with dephosphorisation, followed by ladle refining with desulfurisation and vacuum degassing in order to provide reproducible chemistry, clean and homogeneous steel. The use of special steelmaking practice provides high cleanliness combined with optimised chemical composition. **CryElso™ 9Q**:

- > Produces an excellent toughness at very low temperature and very good crack arrest properties.
- > Has been extensively supplied for LNG storage tanks projects worldwide.
- > Is recognised by all the world-renowned engineering companies as a steel grade suitable for the construction of very safe Liquefied Natural Gas storage tanks. It is further optimised for use in pressure vessels applications, cryogenic piping and ship board storage systems.

PROPERTIES

STANDARDS

- > EN 10028-4 X7Ni9 (1.5663)
- > EN 10028-4 X8Ni+QT680 (1.5662)
- > ASTM/ASME A/SA 553 Type I (UNS K81340)
- > JIS G3127 SL9N590Q

Multiple certification is possible. Please enquire

CHEMICAL ANALYSIS - WEIGHT %

Chemical analysis is guaranteed as per Table I hereunder.

Table I (%)	С	Mn	Si	Р	S	Ni	Cu	Cr	Мо	Al	Nb	V
Heat analysis	≤0.06	0.30/0.80	≤0.30	≤0.005	≤0.002	8.70/9.30	≤0.15	≤0.10	≤0.08	≥0.020	≤0.010	≤0.010
Product analysis	≤0.08	0.25/0.85	≤0.35	≤0.007	≤0.003	8.60/9.40	≤0.18	≤0.13	≤0.10	≥0.015	≤0.013	≤0.013

TENSILE PROPERTIES

One transverse tensile test specimens is sampled at both ends from each Quenched and Tempered plate. Guaranteed tensile properties are given in Table IIGuaranteed tensile properties are given in Table II

Table II	R _{p0.2} (MPa)	R _m (MPa)	A5.65√So (%)	A ₅₀ (%)	
$5 \le t \le 50 \text{ mm}$		690 / 820	18 mini	20 mini	
50 mm < t ≤ 100 mm	590 mini	680 / 820	1011111	20 mini	

IMPACT PROPERTIES

One set of three transverse Charpy V-Notch impact test specimens is sampled at one end from each Quenched and Tempered plate. More specimens can be extracted according to requirements. Guaranteed impact properties are given in Table III. As far as possible in relation with plate thickness, the largest sample size is being used.

Table III	Test	Energy absorption		Lateral expansion	Shear fracture	
Table III	temperature	Average for a set	One specimen for a set	Each sp	ecimen	
10x10 mm specimen for plate		100 J mini	75 J mini			
thickness 10 mm and above		100 J 11111	75511111			
10x7.5 mm specimen for plate	-196°C	75 J mini	56 J mini	0.64 mm mini	75% mini	
thickness 7.5 mm to 9.99 mm	-190 C	75 J IIIIII	201100	0.64 mm mini	75% mini	
10x5 mm specimen for plate		EQ Legini	20 Incini			
thickness 5 mm to 7.49 mm		50 J mini	38 J mini			

Upon request, for thickness 16 mm and above, Drop Weight test may be carried out according to ASTM E 208. Acceptance criteria is double No Break at -196°C. Testing frequency shall be agreed upon. Industeel can also supply previous qualification records.

HEAT TREATMENT

Water Quenching and Tempering treatment. Heating at 820°C minimum before quenching and tempering at 570°C minimum.

RESIDUAL MAGNETISM

CryElso™ 9Q is guaranteed to be free of residual magnetism exceeding 50 Gauss.

INTERNAL SOUNDNESS

CryElso™ 9Q is guaranteed to be free of lamination, porosity and inclusions exceeding the acceptance

criteria of A578 Level C. Upon special request ultrasonic examination can be carried out and more severe criteria can be guaranteed.

SURFACE CONDITION

CryElso[™] 9Q is supplied in the shot blasted condition. A protective paint coating can be applied, please enquire. CryElso[™] 9Q is guaranteed to be free of any injurious surface defects. Upper and lower surfaces are visually checked before shipment. Inherent surface imperfections are being checked according to the acceptance criteria of EN 10163, class B, sub class 2.

DELIVERY CONDITIONS

PREFABRICATED PIECES

By special agreement, e.g. for Liquid Natural Gas storage tanks projects, prefabricated pieces can be delivered according to drawings. The following operations can be done: bevelling, bending, rolling of shell to radius, cutting to shape, fabrication of stiffeners and annular plates, pre-welding.

AVAILABLE SIZES

In order to help designers, Industeel proposes the following standardized plate formats for CryElso™ 9Q for LNG storage tanks (Table X). Table X Max. plate weight: 12.5 tonnes

Thickness (mm)	Width (mm)	Max. Length (mm)
5.00 to 6.99	1500 to 2000	12000
7.00 to 9.00	1500 to 2000	12000
7.00 to 8.00	2500 to 3100	12000
8.01 to 9.99	2500 to 3100	13000
10.00 to 15.00	2500 to 3680	13000
15.01 to 50.80	2500 to 3680	16000

Other sizes may also be delivered, please enquire. Plates of thickness above 50.80 mm thickness are also available on request. Suggested thin plates sizes for the material aimed for the tank bottoms are adapted to high productivity yield as well as being «container-compatible», which helps avoiding unwanted deformations that can occur during handling.

STAMPING

PLATE PROCESSING

CryElso™ 9Q is stamped in accordance with the relevant ASTM standard. All plates are low stress die-stamped for traceability directly after rolling and before any heat treatment .This procedure contributes to removing eventual crack-starting risks. No under thickness is produced by this procedure.

COLD FORMING

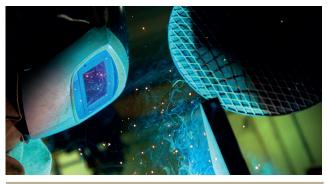
CryElso^M 9Q is suitable for cold forming operation up to a very high level of deformation such as 33% (example of a bending on a mandrel with a diameter that equals two times the plate thickness).

In case of very high deformation level, before cold forming, light grinding of edges in order to obtain a bright metal finish is mandatory.

- > If cold deformation does not exceed 5%, no further heat treatment is needed.
- > If cold deformation exceeds 5%, but is less than 10%, a Stress Relief heat treatment can be applied according to the following recommendation.
- > If cold deformation exceeds 10%, the mechanical properties are to be regenerated by Quenching and Tempering. Soaking time and temperature are mentioned on the Mill test certificate.

Recommended Stress Relief Treatment						
Heating rate	according to furnace capability					
Soaking temperature	570°C±10°C					
Soaking time	2 min/mm of thickness with a minimum of 20 minutes					
Cooling rate	in still air					

WELDING CONDITIONS


CryElso[™] 9Q can be welded using all usual welding processes such as GMAW, GTAW, SMAW and SAW. Usual Heat Input, typically in the range from 1.0 kJ/mm to 2.5 kJ/mm, can be used. Unless the construction is heavily restrained, preheating is not necessary. Interpass temperature shall be limited to 150°C maximum. Unless the construction is heavily restrained or unless mandated by some rule, Post Weld Heat Treatment is not necessary. If for any reason Post Weld Heat Treatment has to be carried out, the following parameters apply.

HOT FORMING

CryElso[™] 9Q is suitable for hot forming operation. A temperature not exceeding 1150°C is recommended. After hot forming, the mechanical properties must be regenerated by Quenching and Tempering. Soaking time and temperature are mentioned on the Mill test certificate.

CUTTING

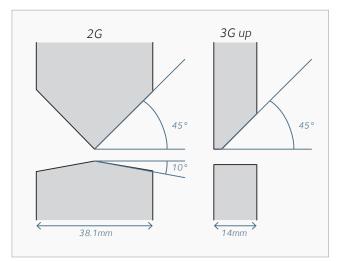
Shear cutting or sawing may be applied. Also, gas cutting or plasma cutting can be used. After a light grinding in order to obtain a bright metal finish, the Heat Affected Zone hardness is guaranteed below 360 HV 10. Less than 0.2 mm metal removal is needed to achieve this. The low carbon martensite which is produced in the Heat Affected Zone remains very tough with low hardness increase, even in the non tempered condition.

Recommended Post Weld Heat Treatment

Heating rate	according to furnace capability
Soaking temperature	570°C±10°C
Soaking time	2 min/mm of thickness with a minimum of 20 minutes
Cooling rate	in still air

Please enquire for further recommendations on PWHT.

PLATE PROCESSING


HAZ PROPERTIES

Thanks to a very low carbon content, the structure in the Heat Affected Zone is a very tough martensite; even in the As-Welded condition. Hardness is limited to acceptable level and crack arrest properties give a full confidence in CryElso^M 9Q when properly welded with Heat Input in the range to 2.5 kJ/mm.

Tables IV and V give typical impact tests and CTOD tests results.

Examples have been selected in order:

- > to cover the range from the first ring of thick shell and one of the last ring of thin shell
- > to cover both welding processes SMAW 3G vertical up for the longitudinal seams and SAW 2G for the circumferential seams.

Table IV	38.1 mm - SAW (approx. 1.0 kJ/mm) - 2G position							
circumferential	Charpy	V - Notch imp	oact tests at -	-196°C		Tests at -163°C		
weld		Individual		Average				
Base Metal	205 J	165 J	185 J	185 J				
Weld Metal	127 J	121 J	118 J	122 J	δ m: 0.716 mm	δ m: 0.429 mm	δ u: 0.458 mm	
	10° bevelled side							
Fusion Line (FS)	126 J	110 J	103 J	113 J	δ u: 0.548 mm	δ u: 0.481 mm	δ u: 0.322 mm	
FL + 2 mm	252 J	304 J	288 J	281 J				
FL + 5 mm	186 J	182 J	180 J	183 J				
			45 °	bevelled side				
Fusion Line (FS)	166 J	124 J	129 J	140 J	δ u: 0.382 mm	δ u: 0.309 mm	δ u: 0.213 mm	
FL + 2 mm	180 J	202 J	154 J	179 J				
FL + 5 mm	174 J	174 J	194 J	181 J				

Table V	14 mm - SMAW (approx. 1.0 kJ/mm) - 3G up position							
longitudinal	Charpy		oact tests at -		Tests at -163°C			
weld		Individual		Average				
Base Metal	196 J	201 J	184 J	194 J				
Weld Metal	102 J	104 J	94 J	100 J	δ m: 0.518 mm	δ m: 0.563 mm	δ u: 0.543 mm	
	Straight side							
Fusion Line (FS)	120 J	62 J	80 J	87 J	δ u: 0.406 mm	δ u: 0.458 mm	δ u: 0.347 mm	
FL + 2 mm	330 J	358 J	358 J	349 J				
FL + 5 mm	214 J	224 J	202 J	213 J				
			45 °	bevelled side				
Fusion Line (FS)	122 J	144 J	146 J	137 J	δ u: 0.570 mm	δ u: 0.614 mm	δ u: 0.558 mm	
FL + 2 mm	162 J	192 J	144 J	166 J				
FL + 5 mm	180 J	196 J	208 J	195 J				

PLATE PROCESSING

FILLER MATERIALS

CryElso™ 9Q can be welded with metals of types Incoloy 625, Hastelloy C276 or other high-strength nickel base alloys. Table VI overviews some of the consumables classification.

Table VI	SMAW	GMAW	FCAW	SAW Wire + Flux
AWS	SFA5-11 ENiCrMo-3 (625) ENiCrMo-4 (276) ENiCrMo-6	SFA 5-14 ERNiCrMo-3 (625) ERNiCrMo-4 (276)		SFA 5-14 ERNiCrMo-3 (625) ERNiCrMo-4 (276)
EN	ISO 14172 E Ni 6625 (625) E Ni 6276 (276) E Ni 6620	ISO 18274 S Ni 6625 (625) S Ni 6276 (276) S Ni 6620	ISO 14172 E Ni 6625 (625) E Ni 6276 (276) E Ni 6620	ISO 18274 S Ni 6625 (625) S Ni 6276 (276) S Ni 6620
JIS	Z3224 DNiCrMo-3 (625) Z3225 D9Ni-2	Z3332 YGT9Ni-2		Z3333 YS9Ni + FS9Ni-F YS9Ni + FS9Ni-H

Table VII lists a non-exhaustive list of suitable filler materials in alloy type 625:

Table VII	SMAW	GMAW	FCAW	SAW		
	SIVIAV	GIMAW	FCAW	Wire	Flux	
ESAB	OK 92.45	OK Autrod 19.82		OK Autrod 19.82 SAW	OK 10.16	
LINCOLN	Blue max NiCro 60/20	Blue max LNM NiCro 60/20		Blue max LNS NiCro 60/20	Blue max 2000	
OERLIKON	Freezal 625					
T-PUT	Thermanit 625	Thermanit 625		Thermanit 625	Marathon 104	
UTP	6222 Mo	A6222Mo	AF6222Mo	UP6222Mo	FX UP6222Mo	

Table VIII lists a non-exhaustive list of suitable filler materials in alloy type C276:

Table VIII	SMAW	GMAW	SAW		
	JIVIAW		Wire	Flux	
OERLIKON			Freezal S276	OP77	
UTP	776Kb	A776	UP776	FX UP776	

Table IX lists some other types of available nickel-based filler materials (ENiCrMo-6):

Table IX	SMAW	GMAW	FCAW	SAW		
Iddle IX	SIVIAVV	GMAW	FCAW	Wire	Flux	
ESAB	OK 92.55					
LINCOLN	Blue max Nyloid 2					
OERLIKON	Freezal ENi9					
UTP	Soudonel D					
KOBELCO (other Hastelloy type)	NIC-1S	TGS-709S	DWN-70S	US-709S	PFN-3 or PFN-4	

APPLICATIONS

CryElso[™] 9Q can be produced in thicknesses from 5 mm up to 100 mm (3/16" up to 4"). CryElso™ 9Q in 5 millimetres (3/16" with all-plus tolerance) is intended for bottom plates of Liquid Natural Gas and other cryogenic liquids storage tanks. 6 mm (1/4") is also available for that purpose. The present trend is to increase the LNG storage tanks capacity up to 200 000 m³, where thickness up to 55 mm (23/16") is needed for the first rings of the shell. CryElso[™] 9Q is already available in this thickness. Safe crack arrest properties and very good mechanical properties are guaranteed based on an extensive welding research program on thick material. CryElso™ 9Q also finds further applications where cryogenic properties and limitation of weight are of importance, like LNG piping, pressure vessels and storage spheres, Floating LNG storage tanks, etc.

YOUR CONTACTS

Patrick Toussaint Tel. +32 71 44 16 27 patrick.toussaint@arcelormittal.com

http://industeel.arcelormittal.com

Industeel Belgium 266, rue de Châtelet B-6030 Marchienne-au-Pont

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.