

User guide for Mars® protection steels

Introduction

8
8
8
8
9
9
9
10
10

Chemica	compositior	
---------	-------------	--

Mechanical operations

Recommendations	
Drilling19	
Milling)
Sawing21	
Water jet cutting21	I

Thermal Operations

Laser Procedure	22
Laser Cutting	
Laser Beveling	
Laser Drilling	25

Oxygen	Cutting	
--------	---------	--

Forming

Cold Forming - Bending
Recommendations / precautions for cold forming

Hot Forming	
-------------	--

Welding

Assembly cleanliness	34
Fitting	
Seams making	
Tack welding	
Welding sequences	
Handling of plates and parts	
Finishing	37

General information	
Coated electrode welding	
Semi-automatic gas-shielded welding	

Electron-beam welding41
Laser welding

Introduction

Safety

Mars® protection steels must be used with caution. The stored elastic energy during forming may lead to rupture or shifting. It is essential to maintain a safe distance and not situate oneself in front of the plate while it is being formed. As a general rule, when using Mars® protection steel, the increased mechanical characteristics of this material must be taken into account. It is crucial to wear appropriate individual safety equipment and to equip machines with collective protection.

General Points

Mars® steels are high hardness (up to 650 HBW in the case of Mars® 650) protection steels offering the optimal combination of ballistic resistance and fabricability properties for their various uses.

If a specific technique - furthermore, one used on more classical construction steels - must be used, probative tests must be carried out and validated prior to manufacture.

Mars® 280 (MIL-DTL-12560 class 2) is a less hardness (280 HBW), high toughness protection steel offering maximum resistance to shock and blast waves for all vehicle structures (main battle tanks, armoured personal carriers ...).

Mars® 380 (NF A36-800 CLA / MIL-DTL-12560 class 1 & 3 / DEF STAN 95-13/ TL2350-0000 grade H) is a protection steel (380 HBW) designed for all vehicle structures (main battle tanks, armoured personal carriers ...) and for ammunition testing targets. Mars® 380 steel is highly versatile, combining ease of use even in important thicknesses, with good ballistic properties against all ammunitions.

Mars® 440 (NF A36-800 THD1 / MIL-DTL-12560 class 4 / TL2350-0000 grade O) is a protection steel intended to be used as vehicle structures for protection against mines and IED. It offers optimal compromise in terms of hardness (440 HBW), toughness, and ductility for resistance against blast loads and fragments, while keeping an excellent workability, especially bending and welding, for building specific vehicle profiles used for blast protection (example: V-shaped floor).

Mars \circledast 500 (NF A36-800 THD2 / MIL-DTL-46100 / TL2350-0000 grade Z) is a high hardness (500 HBW) protection steel offering the optimal combination of ballistic resistance and workability for the following applications :

- Very light to medium-weight vehicles structures.
- Add-on armour of any thickness for usage up to heavy tanks.
- Boxes, containers, shelters, reservoirs, door frames, etc.

Mars® 550 (NF A36-800 THD3 / MIL-DTL-46186) is a very-highhardness (typical 550 HBW) protection steel for lightweight armor applications such as :

- Very light to medium-weight vehicles structures
- Add-on armour of any thickness for usage up to heavy tanks.
- Boxes, containers, shelters, reservoirs, door frames, etc.

It is suitable for applications where the weight of a high-hardness armor is not acceptable but the workshop implementation doesn't allow the use of an ultra-high-hardness armor. Mars® 600 (NF A36-800 THD4 / MIL-DTL-32332 Class 1) is a multipurpose ultra-high-hardness (600 HBW) protection steel with an impressive ballistic behavior in terms of deformation capacity and resistance to multi-impacts together with an excellent toughness and a workability (mainly bending) close to a 500HB steel.

Its great properties suggest unlimited possibilities, as add-on armor but also as structural material.

Mars® 650 (NF A36-800 THD5 / MIL-DTL-32332 Class 2) is a ultra-highhardness (650 HBW) protection steel offering uncompromising ballistic resistance performance, for use as add-on armor when weight reduction is essential.

Mars® steels can be also delivered in a perforated version with, holes evenly distributed within the surface to interact with the diameter of the incoming threat. The use of specific perforation process leads to very good flatness, absence of HAZ and low residual stress.

Chemical Composition (weight %)

Grade	Thickness (mm - inch)	С	S	Р	Si	Mn	Ni	Cr	Мо	V	В	CE*
Mars® 280	5 - 50.8 0.20 - 2	0.27	0.002	0.012	0.4	1.2	1.8	1.5	0.6	0.1	0.003	0.80
Mars® 380	5 - 304.8 0.20 - 12	0.30	0.002	0.012	0.4	1.2	1.8	1.5	0.6	0.1	0.003	0.85
Mars® 440	4 - 50 0.16 - 2	0.22	0.002	0.015	0.5	1.5	2.0	1.0	0.6	-	0.003	0.70
Mais® 440	20 - 80** 0.79 - 3.15	0.24	0.002	0.015	0.5	1.5	5.0	2.0	0.6	-	0.003	-
Mars® 500	2.5 - 50.8 0.09 - 2	0.31	0.002	0.010	0.5	1.0	1.8	1.6	0.6	-	0.003	0.80
Mars® 550	5 - 16 0.20 - 0.63	0.35	0.002	0.010	7	1.2	1.6	0.6	0.6	-	-	0.77
Mars® 600	2.8 - 20 0.11 - 0.79	0.45	0.002	0.010	1	1.0	2.4	0.5	0.5	-	0.003	0.77
Mars® 000	20 - 50.8 0.79 - 2	0.55	0.002	0.010	1	0.7	4.5	0.4	0.5	_	0.003	_
Mars® 650	2.8 - 16 0.11 - 0.63	0.55	0.002	0.010	1	0.7	2.4	0.4	0.5	_	0.003	0.83

* Carbon equivalence per ASTM A6/A6M, i.e. : CE = C + [Mn/6] + [(Cr + Mo + V)/5] + [(Ni + Cu)/15]

** Air hardened, auto-tempering version, suitable for the hot forming of heavy vehicles underbellies

Mechanical Properties

Grade	Thickness (mm - inch)	Delivery Condition	Hardness (HBW)	YS (MPa)	UTS (MPa)	Elongation (%)	KV Transverse Direction −40°C (J / ft.lbs)
Mars® 280	5 - 50.8 0.20 - 2	Guarantee	260 - 310				≥ 43 (≥ 32)
	≤ 13 ≤ 0.51		352 - 388				≥ 20 (≥ 15)
	13 - 35 0.51 - 1.38		331 - 375				≥ 24 (≥ 18)
Mars® 380	35 - 60 1.38 - 2.36	Guarantee	302 - 341		-		≥ 32 (≥ 24)
Mars® 380	60 - 80 2.36 - 3.14	Guarantee	262 - 331				≥ 36 (≥ 26)
	80 - 120 3.14 - 4.72		248 - 285				≥ 56 (≥ 41)
	120 - 150 4.72 - 6		241 - 277				≥ 64 (≥ 47)
	4 - 50	Guarantee	420 - 470	≥ 1100	≥ 1250	≥ 10	≥ 27 (≥ 20)
	0.16 - 2	Typical Value	440	1150	1450	13	48 (35)
Mars® 440	20 - 80** 0.79 - 3.15	Guarantee	≥ 390	≥ 800	≥ 1200	≥ 10	≥ 20 (≥ 15)
		Typical Value	400	900	1300	-	-

** Air hardened, auto-tempering version, suitable for the hot forming of heavy vehicles underbellies

Mechanical Properties

Grade	Thickness (mm - inch)	Delivery Condition	Hardness (HBW)	YS (MPa)	UTS (MPa)	Elongation (%)	KV Transverse Direction -40°C (J / ft.lbs)
Mars® 500	2.5 - 50.8	Guarantee	477 - 534	≥ 1150	≥ 1500	≥ 8	Elongation (%)Transverse Direction -40°C (J / ft.lbs) ≥ 8 $\geq 24 (\geq 18)$ 1228 (21) ≥ 8 $\geq 18 (\geq 13)$ 1124 (18) ≥ 7 $\geq 16 (> 12)$ 1023 (17) $\geq 8 (\geq 6)$
Mars® 500	0.09 - 2	Typical Value	500	1250	1700	12	
Marra @ 550	5 - 16	Guarantee	530 - 570	≥ 1300	≥ 1700	≥ 8	11 24 (18)
Mars® 550	0.20 - 0.63	Typical Value	550	1450	1800	11	
M	2.8 - 20*	Guarantee	577 - 655	> 1300	> 2000	> 7	> 16 (> 12)
Mars® 600	0.11 - 0.79	Typical Value	301	1450	2150	10	23 (17)
Mars® 650	2.8 - 16**	Guarantee	≥ 577		_		Transverse Direction -40°C (J / ft.lbs) $\geq 24 (\geq 18)$ $\geq 28 (21)$ $\geq 18 (\geq 13)$ $\geq 4 (18)$ $\geq 16 (> 12)$ $\geq 23 (17)$
	0.11 - 0.63	Typical Value	650		_		9 (7)

Mars[®] 600 can be produced up to 50mm but only following NFA 36800.
 Mars[®] 650 can be produced thicker for specific applications not requiring MIL specifications.

Mechanical Operations

The classical operations using mechanical process (drilling, milling, sawing) may be done on protection steels, but due to their increased hardness, require the use of special tools, for example, carbide tools. It is possible to perform drilling using thermal operations, please see the "Thermal Operations" chapter.

General Recommendation for machining Mars®

1 – It is very important to strongly fasten the steel part to the support in order to avoid vibrations that will cause splintering and tool breakage.

2 – For these same reasons, the machine tools used must be as rigid as possible.

3 - Drilling is done with the shortest drill possible.

4 – The drill deterioration (beyond normal use) is accelerated by punchings at the end of drilling (flaking). To remedy this, guide bushings may be used; drilling in "bundles" is strongly discouraged.

5 – Generally speaking, we advise using carbide tools (tungsten, for example). It is possible to use high-speed steels, but only for Mars® 280 and 380.

6 – "Soluble oil" type lubricants are advised for operations. Limesulphur additives may be used to enable better lubrication. The lubrication pressure must be at least 10 bar in order to be effective.

7 – Cutting parameters (speed, feed, depth of cut for milling) must be reduced by at least half compared to that used for a classical steel of average hardness (type XC38 - SAE- J403-1038). 8 - Particular attention should be paid to the problems of condensation on plates when the plates temperature is less than the ambient temperature.

9 - For other questions on this matter, contact us at : francois-xavier.hoche@arcelormittal.com

Drilling

Examples of parameters for drilling with a diameter of 10 mm (0.39'') (depth is maximum 5 times the drill diameter).

Monobloc Carbide bit, Seco Feedmax SD1103

Grade	Cutting Speed Vc m / min (<i>ft / min</i>)	Feed f mm / tr (inch / rev)
Reference 42CrMo4	75 (246)	0.24 (0.01)
Mars® 280	45 (148)	0.17 (0.0067)
Mars® 380	45 (148)	0.17 (0.0067)
Mars® 440	45 (148)	0.16 (0.0063)
Mars® 500	45 (148)	0.16 (0.0063)
Mars® 550	45 (148)	0.16 (0.0063)
Mars® 600	35 (115)	0.09 (0.0035)
Mars® 650	35 (115)	0.10 (0.0039)

Interchangeable bit crown, Seco Crownloc SD103

Grade	Cutting Speed Vc m / min (<i>ft / min</i>)	Feed f mm / tr (inch / rev)
Reference 42CrMo4	85 (279)	0.19 (0.0075)
Mars® 280	45 (148)	0.17 (0.0067)
Mars® 380	45 (148)	0.17 (0.0067)
Mars® 440	45 (148)	0.16 (0.0063)
Mars® 500	45 (148)	0.16 (0.0063)
Mars® 550	45 (148)	0.16 (0.0063)
Mars® 600	30 (98)	0.08 (0.0033)
Mars® 650	25 (82)	0.08 (0.0033)

It is possible to use an indexable insert tool, but its use will be advised for diameters greater than 15 mm (0.59"), of the higher hardness grades of the Mars(range.

Milling

Example of milling conditions (during finishing) with a Walter brand mill, ref. F4033.B.050.Z06.06 Xtra.Tec. Chip ref. SNGX1205ANN-F57, grade WSP 45 Tiger.tec

	Mars®	XC38 hardened (SAE 1038)
Cutting Speed rev / min	200	500
Feed per round mm/min (inch / min)	180 (7.08)	310 (12.20)
Depth of cut mm (inch)	0.1 (0.0039)	0.2 (0.0078)

Sawing

In the same manner as for milling, a carbide coated blade will be the best solution. It is crucial to reduce the cutting speed by at least 50% compared to that used for a classical steel of the XC38 hardened type - SAE- J403-1038.

Water Jet Cutting

This method is ideal for producing small parts from plates, but can also be used for parts with larger dimensions.

The main interest in water jet lies in the absence of a Heat Affected Zone (HAZ) and thus by the absence of a modification in structure. This process enables processing products with greater thicknesses than thermal cutting methods, with better tolerances, but generally lower productivity.

Thermal operations

Various methods of cutting and machining using thermal processes are quite interesting for Mars[®] steels. In fact, the very high hardness of Mars[®] steels (specifically Mars[®] 600 and 650) does not affect the cutting speed. However, laser processes, oxygen cutting and plasma cutting create a heat affected zone (HAZ) that must be taken into account for the future steps of product processing and for its use.

During cold periods or in workshops that are inadequately heated, it is advised to pre-heat the plates whose temperature is less than 15°C-60°F.

Particular attention should be paid to the problems of condensation on plate (when the plate temperature is less than the ambient temperature).

Significant condensation may lead to the introduction of hydrogen in the plate during cutting.

In fact, trapped hydrogen can be harmful for the steel's structure.

Monitor the inward angles, the windows or shapes cut inside parts and in general, all areas that may be prone to stress concentrations.

Laser procedure

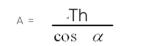
This process is very interesting for Mars(steels, in particular for Mars(600, 650 and 650 perforated steels that offer increased hardnesses.

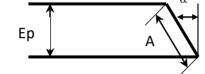
Laser cutting

Laser cutting has the following benefits :

- Dimensional precision and regularity of cut.
- The heat affected zone is not as large as that resulting from a plasma cut (total zone $\leq 1 \text{ mm} (0.039'')$ for thicknesses of $\leq 15 \text{ mm} (0.59'')$).
- Little deformation due to the cut because of the very limited heating
 of the metal in the area where the cut is made.
- Few or no burrs requiring immediate post-cut trimming.
- Reduced draft area compared to plasma or oxycutting techniques that leaves dross of 1.5mm (0.059") to 7mm (0.28") on the surface.
- These benefits make laser cutting the best current method for thermal cutting Mars® steels for thin thicknesses.

To make the most of the process, it is necessary to :

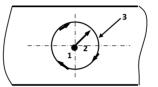

- Eliminate all foreign bodies present on the surfaces to be cut (water, grease, oil, paint, chloride products, etc.). Shot blasted plates are perfectly suitable.
- Adjust the cutting parameters (power, speed, beam diameter, protection gas, focusing distance, etc.) based on the thicknesses and the quality criteria imposed (roughness), as well as the productivity and type of laser.


Laser beveling

Beveling is similar to a cutting operation. The thickness to be taken into account for cutting the thickness of the plate should be multiplied by :

Thickness to be cut =

The maximum thickness is thus based on the thickness of the plate and the bevel.


Some cut thickness values based on the plate thickness:

	Angle of targeted bevel (°)							
Thickness t mm (<i>inch</i>)		15 - inch		30 - inch		45 - inch		60 - inch
3 (<i>0.12'')</i>	3.1	0.122	3.5	0.136	4.2	0.167	6.0	0.236
5 (<i>0.2'')</i>	5.2	0.204	5.8	0.227	7.1	0.278	10.0	0.394
7 (<i>0.28'')</i>	7.2	0.285	8.1	0.318	9.9	0.390	14.0	0.551
8 (<i>0.315'')</i>	8.3	0.326	9.2	0.364	11.3	0.445	16.0	0.630
10 (<i>0.39'')</i>	10.4	0.408	11.5	0.455	14.1	0.557	20.0	0.787
13 (<i>0.52'')</i>	13.5	0.530	15.0	0.591	18.4	0.724	26.0	1.024

Laser drilling

The laser may be used advantageously for drilling Mars® grade plates. As an example, and for sufficient diameters in relation to the thickness, proceed as follows:

Pierce to the centre of the circle to be drilled, then move towards the periphery and cut the hole :

- Phase 1: drilling,
- Phase 2: cutting a radius,
- Phase 3: cutting a hole.

This technique should be refined when the hole's diameter is less than the plate thickness.

Procedure limitation :

The maximum drillable thickness: approximately 15 mm (0.59"), according to the capacities of the equipment used.

The laser's post-drilling reaming is not industrially feasible; the thermally affected zones created by the laser drilling lead to hardnesses that are too great.

Oxygen Cutting

The usual precautions for cutting speed, gaz flow, nozzle sizes must be adhered to.

Typical speed balues usable for oxygen cutting of Mars® steel

Thick- ness mm (inch)	Movement speed m/min (ft / min)	Go Consur L/h	Bleed width mm (inch)	
		Oxygen	Acetylene	
4 (0.16)	0.6 - 1 (2 - 3.3)	800 - 1200		2 (0.08)
5 (0.2)	0.6 - 0.9 (2 -3)	800 - 1200		2 (0.08)
8 (0.315)	0.5 - 0.7 (1.6 - 2.3)	1000 - 1400	200 - 300	2 (0.08)
10 (0.39)	0.4 - 0.65 (1.3 - 2.1)	1000 - 1600		2.5 (0.1)
12 (0.47)	0.4 - 0.6 (1.3 - 2)	1200 - 1800		2.5 (0.1)

Precaution for oxygen or plasma cutting :

- Follow the preheating temperature; see table below
- Minimize heat affected zone (by configuring the cut parameters) in order to avoid soft spots that are too large and that may cause the rejection of certain parts.
- Avoid repeat cutting,
- Finish the post-cutting operations without delay,
- Inspect, at least visually, but preferably using dye penetrant, the absence of cracks on the plasma cut edges.

Plasma Torch Cutting

Plasma torch cutting is strongly discouraged under water.

Dry plasma torch cutting is appropriate if cutting gas contains minimal hydrogen. Plasma cutting is used for the most common thickness range. Its benefits in terms of speed, fewer deformations, smaller HAZ, makes it preferable to classical oxygen cutting.

Preheating table

Grade	Plate Thickness mm (inch)				
	20 50		50	75	
	(0.78	8) (2)	(3)	
Mars® 280		No preheatinc		150°C	
Mars® 380					
Mars® 440	No Prehe	eating	100 - 200°C		
Mars® 500	No Drohesting	150°C			
Mars® 550	No Preheating	150 C			
Mars® 600	No Preheating 100 - 130°C				
Mars® 650	Contact us				

Cold Forming - Bending

Safety

Taking into account the yield strength of Mars® steels, the roll forming and bending operationsmust be carried out with caution. Furthermore, these operations require powerful machines equipped with tooling (rollers,mandrels, dies, etc.) with mechanical characteristics that are capable of enduring the hardness level of the metal plates.

It is essential to provide for asafety distance and the appropriate individual and collective safety equipment.

Recommendations and precautions for cold foming Mars® steels

Direction of the bending axis :

As much as possible, the bending will be directed perpendicularly to the plate rolling direction.

- Condition of the edges :

The edges must be free from cracking initiation defect (blowcuts or burrs from oxygen cutting) and will also be ground in order to remove the rough edges. Ideally, the edges of the plate lower surface should be rounded by grinding at the point where the die will exert pressure.

- Condition of the plate surface :

The metal plates must not have marks in the bending zone (steel stamping marks, for example) or other surface defects capable of producing a crack starter during operation.

Temperature :

For a plate temperature less than 15 $^{\circ}\mathrm{C}$ (60 $^{\circ}\mathrm{F}),$ preheating will preceed the processing of the plates.

Tooling condition :

Keep the tooling clean by eliminating the scale deposited at each operation. Proper lubrication of the mandrel and the die helps a good sliding of the metal between them and thus good stress distribution. For the same reasons, it is advised to round out the female die's edges. The bending force and the springback can thus also be slightly reduced.

Bending speed :

In extreme cases, a slow bending speed enables carrying out the operation with greater safety.

- Bending parameters :

The mandrel bending radius is the most influential parameter over the risk of cracking. It must be as large as possible and must not be less than the values indicated in the table below.

Grade	Thickness (mm - inch)	Manc //	drel R	Width of the die (W)
Mars® 380		5	it	
	< 8 (0.315)	6t	6t	
Mars® 440	8 to 16 (0.315 to 0.63)	6t	5t	
	>16 (0.63)	Contact us		R x 2 +3t
	< 8 (0.315)	5t	5t	
Mars® 500	8 to 16 (0.315 to 0.63)	6t	6t	
	>16 (0.63)	Conto	act us	

Grade	Thickness (mm - inch)	Manc //	drel R	Width of the die (W)
M 0 550	< 8 (0.315)	5t	5t	
Mars® 550	8 to 16 (0.315 to 0.63)	6t	бt	
	< 4 (0.16)	10t	8t	R x 2 +3t
Mars® 600	4 to 6 (0.16 to 0.24)	12t	10t	
	6 to 9 <i>(0.24 to 0.35)</i>	14t	12t	
	> 9 <i>(>0.35)</i>	Contact us		
Mars® 650		Conto	ict us	

Legend

- t is the thickness of the plate.
- R is the minimum radius of the mandrel.
- // or \bot : bending line parallel or perpendicular in the rolling direction.
- Industeel may deliver formed parts upon request.

For multi-steps bending, contact us at francois-xavier.hoche@arcelormittal.com

Bending Force

The bending force depends on four main parameters :

- The thickness
- The yield strength
- The length of the bend
- The width of the female die

It can be estimated based on the following formula :

$$F = \frac{b.\ t^2.R_m}{W - R - ep}$$

Where :

- F is the bending force (N)
- b is the length of the bend (mm)
- UTS is the maximum resistance of the material
- (MPa)
- W is the width of the die (mm)
- t is the plate thickness (mm)
- R is the mandrel radius (mm)

Friction mitigation will also reduce the bending force.

Springback after bending

During the bending operation, under the action of the mandrel, the metal sheet is bent at an angle. When the mandrel raises, the bend opens to an angle higher than the bent angle.

The phenomenon, due to the relaxation of elastic stress, is called springback.

At the time of the tooling design, it will therefore be necessary to take this phenomenon into account. The springback increases when the elastic limit of the material increases. The ratio between bend radius and plate thickness also influence the springback.

The springback is also very sensitive to the clearance between the sheet and the tooling, in other words, to the gap between the die, the plate, and the mandrel.

Friction between the metal plate and the tools may aggravate this phenomenon.

Springback angles of several tens of degrees are possible for harder steels.

Preliminary trials are essential for accurately assessing this elastic springback.

Hot Forming

Hot forming of Mars® grades is theoretically possible.

Nevertheless, the cooling speeds obtained after forming has to be consistent with the hardenability of the grade considered.

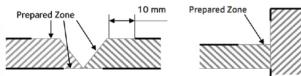
The hot forming temperatures are generally located between 900 $^\circ \rm C$ (1650°F) and 950 $^\circ \rm C$ (1740°F) based on the grade considered.

After die quenching, a proper tempering treatment followed by air cooling has to be done : contact us at <u>francois-xavier.hoche@arcelormittal.com</u> in order to determine the conditions.

When hot forming is planned on a Mars® steel, it must be specified in the order so as to be able to potentially adjust the grade to the required thickness and the capacities for cooling tools.

Welding

General Welding Precautions


Assembly Cleanliness

The condition of the plate cleanliness for the elements to be assembled may be an important factor in avoiding defects such as inclusions or cracks.

Therefore it is essential to **grind the surfaces before welding.** In fact, after a thermal cutting operation or even at the stage of delivery, a superficial layer of oxide exists. Mechanical grinding is the most effective method for eliminating these traces. Brushing, shot-blasting, and sand-blasting may also be suitable in the case of a slightly oxidised surface.

The following technique is recommended :

- Clean, de-grease, and dry surfaces using a solvent and a clean cloth before welding.
- Visually inspect the appearance of the edges to be welded and if possible, use dye penetration inspection. A thermal cutting defect may cause the crack initiation during welding

Fitting

It is preferable to position and hold the plates using mechanical means (bridges, clamps, bolts, Chicago bridges, etc.), avoid beveling angles that are too sharp, avoid gaps that are too big to mitigate shrinkage stress and position the welds at a distance from the bend of at least equal to five times the plates thickness.

Plate Temperature

In order to eliminate the risk of cracking, it is imperative that the temperature of the plates is at least 15 $^{\circ}$ C (60°F) before any operation.

Particular attention should be paid to the problems of condensation on plate (when the plate temperature is less than the ambient temperature).

The table below gives the preheating temperature for the plate depending on the thicknes and the consumables used.

Preheat Temperature and Consumables

F for ferritic A for austenitic

Tack Welding

Tack welding must be done by a qualified welder (NF A80 200-1) and with as much consideration as for a normal welding operation.

- The advised length of a tack weld is at least 50 mm (2").
- The welding parameters used for tack welding must be reduced to limit dilution and decrease the risk of cracking in melted metal.
- Any cracked point must be ground and done again.
- The process of tack welding influences the appearance of the weld bead. MIG/MAG tack welding is preferable using a coated EE electrode (greater risks of bonding).

Seams Making

The welding must be done by a qualified welder (NF A 80 200-1).

1. Priming

In the case of a shaft weld, it is recommended to use the run outtabs at the start and end of the seam which enable the absorption of priming defects in the arc and craters at the end which are eliminated by grinding.

2. Length of the arc

When the length of the arc is too long, it may cause deterioration of the gas protection or by slag that may result in the introduction of ambient hydrogen and increase the risk of cold cracking.

3. Additional passes

When a weld is resumed, it is necessary to grind the end of the previous pass before remelting.

4. Bead shape and types of assembly

Defects in bead shape may cause cracks during use. To avoid these, some rules should be followed.

During the conception of the design, when possible, the double seams will be preferred to the single seams :

Welding Sequence

The optimisation of welding sequences helps reducing residual stress and thus the risk of cracking and deformation.

The creation of residual stress is due essentially to the phenomenon of shrinkage of the heated parts. Indeed, a welding operation will cause localised heating, generating differences in dilatation and metallurgical transformations.

By allowing the possibility of deformation at assembly (thus by decreasing the level of clamping), we decrease the residual stress.

Handling of plates / parts

The Mars® steels must not be handled with magnets or electromagnets. This equipment generates significant remanent magnetisation that may cause arc blowing.

Finishing

- Trimming seams by grinding allows improvement in the resistance to fatigue and removing the effects of notching.
- Hammering after welding has to be well managed to avoid development of micro-cracks.
- Welds cleaning may be done using a shot peening, brushing, shot-blasting or sand-blasting.
- Hot flame straightening or straightening by hammering has to be avoided.

Consumables

General Information

The welding process for protection steels requires the use of austenitic consumable products.

The products proposed in this guide serve as examples and are suitable for working with Mars® protection steels.

However, based on the configuration of assembly and the dilution rate, the sensitivity to hot cracking may increase. Other austenitic, for example, those enriched in manganese and molybdenum, may also be more appropriate. For more information, contact us at **francois-xavier**. **hoche@arcelormittal.com**

For high thicknesses or high stresses level, preheating is recommended according to below table located page 35.

Coated electrode welding

- Electrodes must have basic coating
- Electrodes must be preliminarily heated in a heat chamber and stored at high temperature :
 - Baking 350°C (662°F) for 2 hours
 - Storage 150°C (302°F)
- Some electrodes are vacuum-packed and do not require baking. They must however be used within 8 hours after package opening. Please follow consumable supplier recommendations.

Among the various electrodes that can be used, we list :

SMAW Austenitic

EN ISO 3581-A : A 18 8 Mn / E 20 10 3

	AWS A5.4 : E307-15 / E307-16 / E308Mo-17
ESAB	OK 67.45 OK 67.43
LINCOLN	Jungo 307
OERLIKON	SUPRANOX RS 307
SELECTRAC	307B, 307R, INOX 308Mo
vaBW	BOHLER FOX A 7-4, THERMANIT X, THERMANIT XW Or BOHLER FOX CN 19/9 M THERMANIT 20/10 W

Semi-Automatic gas - shielding welding

- In the cas of MIG (Metal Inert Gas) welding, only use wire.
- You can perform MIG (Metal Inert Gas) welds with great bevel gaps. Sweeping the torch is therefore necessary and limits the energies introduced.
- The use of high silicon (0.7%) wire promotes wettability and provides good handling during welding.

Among the various electrodes that can be used, we list :

GMAW Austenitic

EN ISO 14343-A / 17633-A : T-G 18 8 Mn or G 20 10 3

> AWS A5.9 : ER307 or ER308Mo

CASTOLIN	EGAP 5216
ESAB	OK Autrod 16.95 OK Tubrod 15.34
LINCOLN	LNM 307
OERLIKON	FILINOX 307
SELECTRAC	18/8 M
vaBW	THERMANIT X AVESTA 307-Si Or BOHLER CN 19/9 M-IG THERMANIT 20/10

Shielding gas : Ar + 2% CO2 (EN ISO 14175 M12) or Ar + 18% CO2 (EN ISO 14175 M21)

Note : The properties of the austenitic structure wires are different from those of Mars® steels. The builders of armoured vehicles must take these differences into account and provide for lap joints rather than butt welded joints.

Assembly with High Density Energy Process

Electron Beam Welding (EB)

EB welding of $\mathsf{Mars}^{\textcircled{R}}$ grade steels with low thickness is industrially used :

- The quality of the welds obtained (good soundness, no cracks) is completely satisfactory.
- Weld yield strength is comparable to the base material (weld without filler metal), but its toughness is lower than a joint made with austenitic or austenitic-ferritic filler metal (cases of MIG welds and coated electrodes).

But, EB welding is still little used for carrying out large mechanical welded assemblies (e.g. armoured vehicle hulls) because this process requires a substantial investment due in large part to the necessity of welding in a vacuum meaning large capacity vacuum chamber, pumping unit, etc.

Laser Welding

Laser welding of Mars® grade steels with low thickness (Th. < 10 / 12 mm (0.39''/0.47'')) is possible.

The characteristics of welded joints are similar to those of joints done by electron beam and laser beam welding do not need vacuum to work. Welding is done under a gas shielding (like MIG) and without filler metal, the risks of introducing hydrogen during welding are limited, therefore the risk of cracking is also limited.

It is possible to use the hybrid laser / MAG welding process with gas : nitrogen, argon, helium.

Industeel France Le Creusot Plant 56 rue Clemenceau F - 71 201 Le Creusot Cedex

Your contact François-Xavier HOCHE Tel. +33 6 84 11 92 80

francois-xavier.hoche@arcelormittal.com

Technical data and information are to the best of our knowledge at the time of editing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company.