Industeel

ArcelorMittal

UR ${ }^{\text {TM }} 625$

UR ${ }^{\text {TM }} 625$

$U^{\top T M} 625$ is an austenitic nickel - base superalloy presenting excellent resistance to oxidation and corrosion over a broad range of corrosive conditions. The alloy has high strength and toughness at temperatures ranging from cryogenic temperature to $1100^{\circ} \mathrm{C}$. UR ${ }^{\boldsymbol{T M}} 625$ also has exceptional fatigue resistance. Its fatigue strength is exceptional. This non - magnetic alloy derives its strength from the strengthening effect of Mo and Nb on its Ni - Cr matrix. In addition to good oxidation resistance, the alloy also resists to corrosive attack by many other media; it is virtually immune to chloride - ion stress corrosion cracking. The alloy is not magnetic.

STANDARDS

```
> EURONORM: EN 2.4856 Ni Cr22 Mo9 Nb
> ASTM: UNS N06625
    B443
> ASME: SB - 443
```

CHEMICAL ANALYSIS - WEIGHT \%
Typical values

	Ni	Cr	Fe	C	Mn	Si	Mo	Co	Al	Ti	$\mathrm{Nb}+\mathrm{Ta}$	P	S
MIN	bal	20.0					8.0				3.15		
MAX		23.0	5.0	0.05	0.50	0.50	10.0	1.0	0.40	0.40	4.15	0.015	0.015

PHYSICAL PROPERTIES

Typical values

Density: $8.44 \mathrm{~kg} / \mathrm{dm}^{3}-0.305 \mathrm{lb} / \mathrm{in}^{3}$
Mean coefficient of thermal expansion,
$\mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C} \times 10^{-6}$

$20-$	$20-$	$20-$	$20-$	$20-$	$20-$	$20-$
$100^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$500^{\circ} \mathrm{C}$	$700^{\circ} \mathrm{C}$	$800^{\circ} \mathrm{C}$	$900^{\circ} \mathrm{C}$	$1000^{\circ} \mathrm{C}$
12.9	13.3	13.9	14.9	15.5	16.1	16.8

Coefficient of thermal conductivity, W.m / m $\mathrm{m}^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{s}$

$20^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{C}$	$540^{\circ} \mathrm{C}$	$760^{\circ} \mathrm{C}$	$980^{\circ} \mathrm{C}$
9.8	10.8	17.5	20.8	25.2

Coefficient of electrical resistivity at $20^{\circ} \mathrm{C}$, microhm $\times \mathrm{cm}^{2} / \mathrm{cm}$	129
Modulus of elasticity, MPa tension	$206-700$
Modulus of elasticity, MPa torsion	$75-790$
Poisson's ratio	0.31
Melting range, ${ }^{\circ} \mathrm{C}$	$1290-1350$
Coefficient of specific heat, at $21^{\circ} \mathrm{C}, \mathrm{J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$	0.41
Curie temperature,$^{\circ} \mathrm{C}$	lower than - 196
Permeability at $21^{\circ} \mathrm{C}$ and $\mathrm{H}=200$ oersted (annealed)	1.0006

MECHANICAL PROPERTIES

Room temperature properties (Min. values)

Minimum short - time mechanical properties in the soft - annealed condition (grade 1) at elevated temperatures according to VdTÜV material data sheet 499. ISO V - notch impact toughness, in accordance to DIN EN 10045 Part 1. Average values at RT ak $\geq 125 \mathrm{~J} / \mathrm{cm}^{3} \mathrm{KV} \geq 100 \mathrm{~J}$ The alloy is subject to loss of impact strength at room temperature after exposure in the range of $1000^{\circ} \mathrm{C}\left(538^{\circ} \mathrm{C}\right)$ to $1100^{\circ} \mathrm{F}\left(593^{\circ} \mathrm{C}\right)$.

IN SERVICE CONDITIONS

PROPERTIES IN SERVICE

High temperature oxidation
UR' ${ }^{\text {TM }} 625$ has good resistance to oxidation and scaling at high temperature. $1000^{\circ} \mathrm{C}$ is a temperature at which scaling resistance become a significant factor in service.

CORROSION RESISTANCE PROPERTIES

URT 625 presents better pitting corrosion resistance than UR ${ }^{T M} 904 \mathrm{~L}$ and conventional $6 \% \mathrm{Mo}$ grades. Below Typical Critical Pitting Temperatures measured according to ASTM G48 method E ($6 \% \mathrm{FeCl}_{3}+1 \% \mathrm{HCl}$).

Grade	CPT range $\left({ }^{\circ} \mathrm{C}\right)$	CPT range $\left({ }^{\circ} \mathrm{F}\right)$
$U^{\text {TM }} 316 \mathrm{~L}$	$0-7.5$	$32-45.5$
$U^{\text {TM }} 904 \mathrm{~L}$	$30-40$	$86-104$
$U^{\text {TM }} 254$	$45-55$	$113-131$
$U R^{\text {TM }} 625$	$65-85$	$149-185$

UR ${ }^{T M} 625$ grade exhibits excellent corrosion resistance in a wide range of industrial media:

Acids

UR ${ }^{T M} 625$ is highly resistant in mineral acids (sulfuric acid, nitric acid, phosphoric acid) and also in organic acids (oxalic acid, formic acid, acetic acid). Please ask for our recommendations according to the temperature and the acid concentration.

Seawater and brackish water

Tests show that UR ${ }^{\text {TM }} 625$ has a good resistance to pitting corrosion in seawater and brackish water under both flowing and stagnant conditions and under fouling. This grade can be subjected to crevice corrosion under severe conditions.

Air pollution control

Tests conducted in simulated wet flue gas desulfurization systems show that URTM 625 is more resistant to pitting corrosion than standard 6\%Mo grades especially when bromide ions are added. The following data are illustrative.

Simulated wet FGD environment				
Grade	O ppm Br -	1.000 ppm Br -	$5000 \mathrm{ppm} \mathrm{Br}-$	
N08904	Pitting	Pitting	Pitting	
S31254	No pit	No pit	Pitting	
S34565	No pit	No pit	Pitting	
N06625	No pit	No pit	No pit	
S31266	No pit	No pit	No pit	

Oil \& Gas

According to the NACE MR0175/ISO15156 standard, UR™ 625 can be used with any combination of temperature, $\mathrm{H}_{2} \mathrm{~S}$ partial pressure, chloride concentration and in situ pH in production environments.
High temperature applications
UR ${ }^{T M} 625$ has excellent oxidation resistance up to $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right)$. UR ${ }^{T M} 625$ is also resistant in atmosphere containing halogen gases.

DELIVERY CONDITIONS

SIZE RANGE

	Hot rolled plates	Clad plates
Thickness	8 to 50 mm	10 to 30 mm
Max Width	$5 / 16$ to $2^{\prime \prime}$	$0.4^{\prime \prime}$ to $13 / 16^{\prime \prime}$
	Up to 2900 mm	Up to 2800 mm
Up to $114^{\prime \prime}$	Up to $110^{\prime \prime}$	
Up to 12000 mm	Up to 12000 mm	
Up to $472^{\prime \prime}$	Up to $472^{\prime \prime}$	

Other sizes are available on request.

FABRICATION

UR ${ }^{T M} 625$ is readily fabricated by common industrial processes and has excellent weldability qualities and requires no postweld thermal treatment for maintenance of its corrosion resistance. Heating, pickling, hot and cold forming, machining and welding: information on request.

WELDING

UR' ${ }^{T M} 625$ can be readily welded by conventional processes used for austenitic stainless steels. The material should be in the mill annealed condition and thoroughly descaled and cleaned before welding. Preheating is not required and postweld treatment is not needed to maintain or restore corrosion resistance.

APPLICATIONS

Typical uses include industries such as:

> Aerospace, chemical processing, marine, off-shore, nuclear, transportation and storage
> Chemical reactor vessels, distillation columns, evaporators, heat exchangers, transfer piping and valves
> Flue stacks (FGD), waste storage and incinerators, scrubbers, fasteners
> Propeller blades, exhaust ducts
> Undersea and offshore pipes
> Nuclear reactor core and control rod components in water reactors and advanced reactors.

Sandra Le Manchet

Tel. +33 619725361
sandra.le-manchet@arcelormittal.com
https://industeel.arcelormittal.com

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels.Therefore, we suggest that information be verified at time of enquiry or order.Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company.Further information may be obtained from the address opposite.

