

UR™ 2205+

UR[™] 2205+: A 22Cr 3 Mo duplex stainless steel with PREN ≥ 36

UR™ 2205+ is a nitrogen alloyed austenitic – ferritic duplex stainless steel (2205), with a minimum PREN value guaranteed of 36 due to over – alloying in Molybdenum and Chromium. This alloy presents higher mechanical and corrosion resistance properties than standard 22Cr duplex stainless steels.

Its yield strength is about twice that of standard austenitic grades and well in excess of that of nitrogen alloyed austenitics.

The operating temperature of **UR™ 2205+** is generally limited from – 50°C to 280°C (– 58°F to 536°F). Lower temperature used particularly for welded structures may also be considered for certain operating conditions.

PROPERTIES

STANDARDS

> EURONORM: EN 1.4462 X2 Cr Ni Mo N 22 - 5 - 3
> ASTM: UNS \$ 31803/\$ 32205

CHEMICAL ANALYSIS - WEIGHT %

Typical values

С	Cr	Ni	Мо	
0.020	22.6	6	3.4	0.18

 $\mathsf{PREN} = [\mathsf{Cr}\%] + 3.3 \ [\mathsf{Mo}\%] + 16 \ [\mathsf{N}\%] \ge 36$

PHYSICAL PROPERTIES

Density: 7.85 kg/dm³

Interval temperature °C (°F)	Thermal expansion (αx10 ⁻⁶ K ⁻¹)	T °C (°F)	Resistivity (μΩ.cm)	Thermal conductivity (W.m ⁻¹ .K ⁻¹)	Specific heat (J .kg ⁻¹ .K ⁻¹)	Young modulus E (GPa)	Shear modulus G (GPa)
20 - 100	12	20 (60)	00	17	450	200	75
(68 - 212)	ΙZ	20 (68)	80		450	200	/ 5
20 - 200	12.5	100 (212)		10	450	104	70
(68/392)		100 (212)		18	450	194	73
20 - 300	10	200 (202)		10	500	100	70
(68/572)	13	200 (392)		19	500	186	70
		300 (572)		20	550	180	67

MECHANICAL PROPERTIES

°C	R _{p0.2} (MPa)	R _{p1.0} (MPa)	R _m (MPa)	°F	YS 0.2% (ksi)	YS 1.0% (ksi)	UTS (ksi)	A/ Elongation (%)
20	510	540	720	68	74	78	104	25
Plates th < 50	Plates th < 50 mm (2 inches)							
50	460	500	670	122	67	72	97	
100	420	450	640	212	61	65	93	25
150	380	420	620	302	55	61	90	
200	350	390	600	392	51	56	87	20
250	320	350	600	482	46	51	87	
300	310	340	600	572	45	49	87	20

Tensile properties - Minimum guaranteed values

For solution annealed condition and plate thickness ≤ 50 mm (2"). UR™ 2205+ grade should not be used over 280°C (530°F) for long periods.

°C	R _{p0.2} (MPa)	R _{p1.0} (MPa)	R _m (MPa)	°F	YS 0.2% (ksi)	YS 1.0% (ksi)	UTS (ksi)	A/Elongation (%)
Plates th > 5	0 mm (2 inche	s)						
50	440	480	650	122	64	70	94	
100	400	430	620	212	58	62	90	
150	360	400	600	302	52	58	87	
200	330	370	580	392	48	64	84	
250	300	330	580	482	44	48	84	
300	290	320	580	572	42	46	84	

UR™ 2205+ should not be used over 280°C (536°F) for long periods.

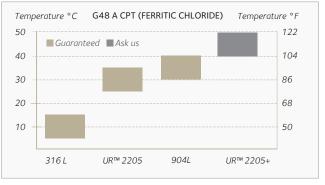
Impact values

KCV - 20%C	+68°F	120J/cm ² average	87 Ft.lbs
KCV +20°C	+08 ° F	90J/cm² mini	65 Ft.lbs
	°C – 58°F	90/cm ² average	65 Ft.lbs
KCV - 50°C		75J/cm ² mini	54 Ft.lbs

STRUCTURE

The UR^m 2205+ alloy has a two - phase microstructure containing, 50% α , 50% γ

IN SERVICE CONDITIONS


CORROSION RESISTANCE

General corrosion

UR™ 2205+ has a general corrosion resistance better than a 316L steel (Z3 CND 17.12.03) and equivalent or better than a 904L alloy (UR™ 904).

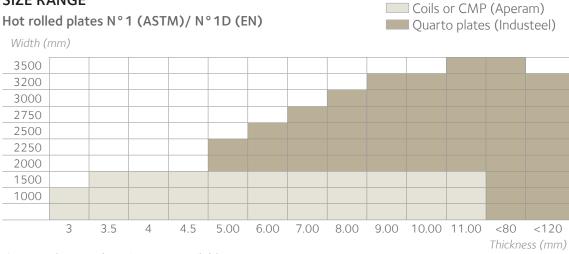
Pitting corrosion

	PREN value
316L	≥ 23
UR™ 2205	≥ 33
UR™ 2005 +	≥36
UR™ 904 (20CR/25 N1/4.5 Mo/Cu)	≥ 32

Crevice corrosion

Better than 316L; equivalent to UR[™] 904 / 904L.

Stress corrosion cracking


Duplex structure gives to UR™ 2205+ a definite advantage over austenitic steels (chloride containing media at temperatures up to 280°C (536°F).

Intergranular corrosion

UR™ 2205+ is resistant to Strauss test (A262E) in the delivered and as welded conditions.

SIZE RANGE

DELIVERY CONDITIONS

Quarto plates: other sizes are available on request. Maximum plate length up to 12000 mm (472").

PLATE PROCESSING

HEAT TREATMENT

The heat treatment for delivery is 1050 - 1100°C (1922 - 2012°F).

Air cooling for thicknesses < 8 mm is agreed, but water quenching is advised.

For thicknesses of 8 mm and above, water quenching is necessary.

Special precautions must be taken during heat treatment to avoid deformation.

COLD FORMING

Due to its higher mechanical properties, UR™ 2205+ requires more strength than a classical austenitic stainless steel. Deformation higher than 20% requires an intermediate heat treatment.

HOT FORMING

Recommended between 1150°C and 1000°C (2102 and 1832°F). After forming, a new heat treatment is necessary to obtain optimal mechanical properties and microstructure stability.

PICKLING

A pickling solution acceptable for 316L may be used, but the pickling time required is at least twice that of 316L.

MACHINING

Machining is yet another example of a fabrication process in which the employed techniques (eg. tools and lubricants) are very similar to those used for conventional stainless steels. Machining characteristics of UR[™] 2205+ are better than those of 316L and 904L.

E		Б		CONDI	TIONS		
Operation	Tool	cati	Depth of cut	Feed	SPEED m/mi	n (feet/min)	
Ope		Lubrication	mm (inch)	mm/t (inch/t)	UR™ 904	UR™ 2205+	
	High speed steel	oil	6 (0.23)	0.5 (0.019)	6 - 11 (19.7 - 36.1)	15 - 20 (49.2 - 65.6)	
		Cutting c	3 (0.11)	0.4 (0.016)	9 - 14 (29.5 - 45.9)	23 - 28 (75.5 - 91.9)	
Turning	High	0	1 (0.04)	0.2 (0.008)	15 - 20 (49.2 - 65.6)	30 - 35 (98.4 - 114.8)	
Turr		lio g	6 (0.23)	0.5 (0.019)	25 - 35 (82 - 114.8)	75 - 85 (246.1 - 278.9)	
	Carbide	or cutting oil	3 (0.11)	0.4 (0.016)	45 - 55 (147.6 - 180.4)	90 - 100 (295.3 - 328.1)	
		Dry (1 (0.04)	0.2 (0.008)	65 - 70 (213.3 - 229.7)	110 - 120 (360.9 - 393.7)	
		Blade width mm (inch)		Feed mm/t (inch/t)	UR™ 904	UR™ 2205+	
4	High speed steel	High speed steel Cutting oil	1.5 (0.06)	0.03 (0.0012)	10 - 13 (32.8 - 42.7)	23 - 28 (75.5 - 91.9)	
Parting off			High speed : Cutting o	3 (0.11)	0.04 (0.0016)	11 - 14 (36.1 - 45.9)	24 - 29 (78.7 - 95.1)
Å.						6 (0.23)	0.05 (0.0020)
	Drill Ø mm (inch)			Feed mm/t (inch/t)	UR™ 904	UR™ 2205+	
	_		1.5 (0.06)	0.02 (0.0008)	6 - 10 (19.7 - 32.8)	10 - 14 (32.8 - 45.9)	
Drilling	gh speed steel	ng oil	3 (0.11)	0.05 (0.0020)	7 - 11 (23 - 26.1)	11 - 15 (36.1 - 49.2)	
Dril	High spe	Cutting	6 (0.23)	0.08 (0.0031)	7 - 11 (23 - 26.1)	11 - 15 (36.1 - 49.2)	
			12 (0.48)	0.09 (0.0035)	7 - 11 (23 - 26.1)	11 - 15 (36.1 - 49.2)	
				Feed mm/t (inch/t)	UR™ 904	UR™ 2205+	
Milling profiling	High speed steel	Cutting oil		0.05 - 0.10 (0.002 - 0.004)	10 - 20 (32.8 - 65.6)	12 - 22 (39.4 - 72.2)	

PLATE PROCESSING

WELDING

UR™ 2205+ is an austenitic – ferritic duplex grade, and the ferrite/austenite ratio is controlled by:

- > its chemical composition, designed to obtain between 45 and 55% of ferrite and the complement austenite after heat treatment at 1050/1100°C (1922/2012°F),
- > the thermal cycle undergone by the alloy, a higher heat treatment temperature (>1100°C is 2012°F) resulting in a higher amount of ferrite.

After thermal cycle (heat at high temperature and rapid cooling), the HAZ structure is enriched by ferrite compared to the heat treated structure. Nevertheless, the high nitrogen level of UR[™] 2205+ allows an excellent control of the structure in HAZ. The chemical composition of UR[™] 2205+ has been calculated so that ferrite does not exceed 75% to guarantee a good corrosion resistance and a good ductility. Austeno - ferritic structure of UR[™] 2205+ steel (primary solidification) excludes all risk of hot cracking.

UR™ 2205+ is easily welded by the following processes:

IIG welding, both manual and automatic	MIG welding	
Plasma welding	Manual arc welding with covered electrodes	
Flux cored Arc Welding	Submerged Arc Welding	
(FCAW)	(SAW)	

Special care must be taken in controlling the ferrite content of the weld deposit, which is usually between 20 and 60%, and, depending on the application, a low ferrite content will be recommended (20 - 40% of α) i.e. for SMAW, SAW and FCAW The chemical composition has to be adapted to stabilise austenite (generally, nickel or nitrogen overalloying compared to the base metal). Using of a Cr and Mo overalloyed filler metals is recommended. Welding in several passes helps to limit ferrite content.

As for austenitic grades:

- > No preheat is necessary prior to welding
- > The heat input must be controlled (10 to 25 kJ/ cm is generally recommended)
- > Interpass temperature must be limited to 150°C (302°F)
- > No post weld heat treatment is necessary, except if, in particular cases, or for a particular welding, a lower ferrite content is necessary. Treatment will be realised at a sufficient temperature to avoid any transformation in phase. A higher temperature can be required when using overalloyed welding products 1080/1100°C (1976/2012°F).

- > Usual precautions including cleaning and degreasing of weld area, protection against weld spatters must be taken to ensure corrosion resistance of finished product.
- > Careful final descaling and/or cleaning of the weld is highly recommended.
- 1 Plasma + TIG welding:
- > Typically used for thicknesses 5 to 12 mm.
- > Normal 22.09 wire, or overalloyed wire (25.10.4 type) will be used for plasma pass.
- > If no filler metal is used for the plasma arc, Ar + (2 - 3)% N2 will be used as shielding gas.
- > Ferrite content will be between 30 and 60%. Complementary TIG welding will also be realised with normal 22.09 wire or overalloyed wire. The ferrite content will also be between 30 and 60%.
- > Nitrogen addition (2 3%) to the shielding gas can be recommended to stabilize the microstructure and improve the corrosion behaviour. In each case, contamination of shielding gas by hydrogen must be avoided.

2- Manual Metal Arc Welding:

A standard 22.09 wire or 25 - 10 - 4 grade allowing overalloy of deposit metal will be used. The ferrite content is between 20 and 40%. For more information, please contact us.

3 - Submerged Arc Welding:

This process can be used for single pass or multipass welds for high thicknesses (≥ 10 mm) or to complete a plasma pass. The filler metal is a duplex wire and basic fluxes should be preferred. Ferrite content will be controlled between 20 and 40% in order to avoid cold cracking risks; use only well dryed fluxes to avoid hydrogen pick-up.

APPLICATIONS

Gas transportation

- > Tubes for platforms
- > Tubes for transportation of acid gas to refining stations
- > Wet carbonic gases collecting unit

Other uses

- > Bulk tankers for transportation of chemical products
- > Acid areas (H₂SO₄ diluted, phosphoric acid, production and storage of phosphates)
- > Urea production
- > Trucks, lorries
- > Pollution control industry
- > Pulp and paper industry
- > Plastic industry
- > Food industry
- > Chloride areas

Industeel Belgium

266 rue de Châtelet B – 6030 Marchiennne–au–Pont

YOUR CONTACTS

Didier Paul Tel. + 33 6 19 28 29 31 didier.r.paul@arcelormittal.com

http://industeel.arcelormittal.com

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.