

# CarElso™ 70 HIC SA-516 gr. 70

# CarElso™ 70 HIC: HIC Resistant Steel for Pressure Equipment in Sour Service

**CarElso™ 70 HIC** is a special high strength normalised CMn steel adapted for pressure equipment. CarElso™ 70 HIC is manufactured via the electric arc furnace with desulfurisation, dephosphorisation, ladle refining and vacuum degassing to provide a reproducible, clean and homogeneous steel.

The use of special steelmaking practice giving high steel cleanliness gives CarElso™ 70 HIC excellent resistance to wet H<sub>2</sub>S cracking such as HIC. This steel also displays excellent weldability and toughness properties.

This steel is particularly suitable for pressure equipment in both refinery and gas treatment applications under sour service conditions, where wet H<sub>2</sub>S corrosion can be a problem (e.g. high pressure separators).

**PROPERTIES** 

#### **STANDARDS**

> EN 10028 - 3 P 355 (N - NH - NL1 - NL2)

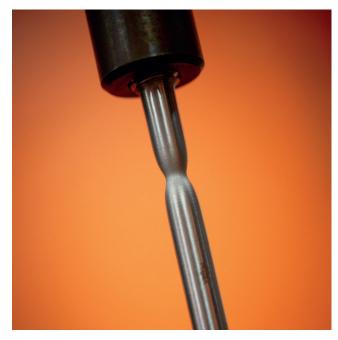
> ASTM A 516 gr. 70 > ASME II Part A SA 516 gr. 70

Please consult for multiple certification

#### **CHEMICAL ANALYSIS - WEIGHT %**

| С      | Mn          | Si          |         |         | Ni    | Cr     | Мо     | Cu     |
|--------|-------------|-------------|---------|---------|-------|--------|--------|--------|
| ≤ 0.22 | 0.85 - 1.20 | 0.15 - 0.40 | ≤ 0.008 | ≤ 0.002 | ≤ 0.4 | ≤ 0.30 | ≤ 0.12 | ≤ 0.20 |

Guaranteed values on heat.


Ceq.  $\leq$  0.43% for thickness  $\leq$  105 mm ( $\leq$  4 inches). Please consult for higher thickness. (Ceq (%) = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15).

#### MECHANICAL PROPERTIES

Typical transverse tensile values at room temperature after PWHT Guaranteed values as per applicable National Standard

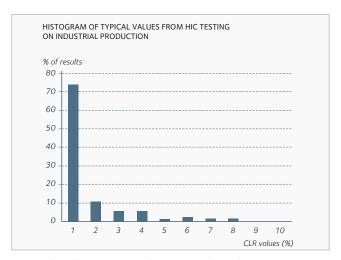
|                  | YS (MPa/<br>ksi) | TS (MF   | Elongation% |     |
|------------------|------------------|----------|-------------|-----|
|                  | Min              | Min      | Max         | Min |
| t < 35 mm        | 355 / 52         | 490 / 71 | 580/84      | 21  |
| 35 < t ≤ 50 mm   | 345 / 50         | 490 / 71 | 580 / 84    | 21  |
| 50 < t ≤ 70 mm   | 325 / 47         | 490 / 71 | 580 / 84    | 20  |
| 70 < t ≤ 100 mm  | 315 / 46         | 485 / 70 | 575 / 83    | 20  |
| 100 < t ≤ 150 mm | 295 / 43         | 485 / 70 | 575 / 83    | 20  |
| 150 < t ≤ 250 mm | 295 / 43         | 485 / 70 | 575 / 83    | 19  |

Plate compacity guaranteed to ultrasonic levels determined by ASTM A 578 level B or EN 10160 - S1E2. CarElso® 70 HIC guarantees reduction in area in through - thickness tensile testing  $Z\% \geq 35\%$  average/25% mini as per ASTM A770/EN10164 (testing an added extra). Guaranteed high temperature tensile properties as per EN 10028 - 3 P355 (N - NH - NL1 - NL2).



#### **IMPACT PROPERTIES**

Transverse Charpy toughness values of 20J average / 14J minimum can be guaranteed down to  $-46 \,^{\circ}\text{C}$  /  $-50 \,^{\circ}\text{F}$  for plates  $\leq 150 \, \text{mm}$  for the PWHT conditions given. Please consult for higher thickness and other impact requirements or PWHT conditions.


#### **HIC RESISTANCE**

CarElso™ 70 HIC is a reproducible and clean steel with strict limits on impurity elements, giving excellent resistance to Hydrogen - Induced Cracking (HIC). The mill - certified HIC guarantees on plate are given below. For other acceptance criteria, please consult.

HIC testing according to NACE TM0284 solution A (pH3). Average value of all specimens.

|       | CLR (%) | CTR (%) | CSR (%) |
|-------|---------|---------|---------|
| HIC 1 | 5       | 1.5     | 0.5     |
| HIC 2 | 10      | 3       | 1       |
| HIC 3 | 15      | 5       | 1.5     |

This excellent level of HIC resistance requires extra low sulfur and oxygen contents in order to reduce the size and number of sulfide and oxide inclusions. These inclusions are known initiation sites for HIC cracks. The **ultra – low sulfur and oxygen contents** given below mean that additional sulfide shape control measures, such as additional calcium treatment, are not necessary. In addition, **a low phosphorus content** is also crucial to reduce the risk of cracking in microsegregated areas. It also results in a less – banded microstructure.



Typical and guaranteed impurity levels necessary to provide excellent HIC resistance.

| Impurity Levels | Typical | Maximum  |  |  |
|-----------------|---------|----------|--|--|
| Р               | 0.005%  | ≤ 0.008% |  |  |
| S               | 0.001%  | ≤ 0.002% |  |  |
| [0]             | 10 ppm  | ≤ 20 ppm |  |  |

Supplementary  $H_2S$  testing conditions (for example SSC testing according to NACE TM0177) are available upon request.

#### **HEAT TREATMENT**

Normalising treatment. PWHT  $600^{\circ}$ C  $\pm$   $10^{\circ}$ C /  $1120^{\circ}$ F  $\pm$   $20^{\circ}$ F during 2 minutes per mm or 1 hour per inch. For other requirements, please consult.

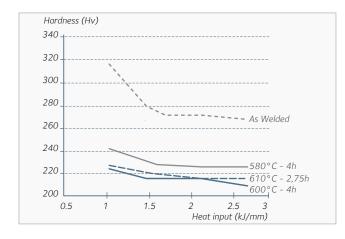
### **FORMING**

Cold forming (+ stress relief for high strains) or hot forming can be applied:

- > cold forming (< 500 °C / 930 °F): to be followed by Post Weld Heat Treatment (PWHT)
- > hot forming (900 1100°C / 1650 2010°F): to be followed by complete heat treatment + PWHT Please contact us for full heat treatment details.

#### WELDING CONDITIONS

The reduced carbon content allows the use of low preheating temperatures.


| Heat Input      | Hydrogen Content                               | Preheating<br>Temperature | Post - heating |
|-----------------|------------------------------------------------|---------------------------|----------------|
| 1.0 - 2.0 kJ/mm | 3 ≤ H <sub>2</sub> < 5 ml/100 g<br>(SAW, SNAW) | 100°C                     | 100°C / 2h     |
| 1.0 - 1.5 kJ/mm | H <sub>2</sub> ≤ 3 ml/I00 g<br>(FCAW, GMAW)    | 100°C                     | 100°C / 2h     |

Minimum preheating temperature as defined by implant testing (NFA 89100).

#### **HAZ PROPERTIES**

In  $H_2S$  service, it is necessary to limit the maximum HAZ hardness to  $\leq 22$ HRC or  $\leq 248$ Hv10 in order to reduce the risk of Sulfide Stress Cracking (SSC). CarElso® 70 HIC has been designed to comply fully with these limits imposed by Standard MR 0175/ISO 15156.

In order to control the maximum HAZ hardness, the carbon equivalent must be limited, ideally to  $\leq 0.43\%$ , and microalloying additions should be avoided for normalised steels. In such cases, the hardness limit can be met for CarElso<sup>™</sup> 70 HIC after PWHT under a wide range of welding conditions. The following typical hardness values have been measured in the HAZ (Fusion Line + 1 mm) in the as – welded and PWHT conditions.



The toughness of the HAZ is excellent, as shown by the following results obtained across the weldment in the as - welded condition (impact values in Joules).

| Temperature      | Fusion line       |           | FL + 1 mm         |           | AC1               |           |
|------------------|-------------------|-----------|-------------------|-----------|-------------------|-----------|
| 0°C (32°F)       | 200<br>218<br>176 | Av<br>198 |                   |           |                   |           |
| - 40°C ( - 40°F) | 110<br>148<br>180 | Av<br>146 | 208<br>222<br>220 | Av<br>217 | 222<br>166<br>170 | Av<br>186 |

# **FILLER MATERIALS**

Consumables used for the welding of CarElso™ 70 HIC must correspond to the following standards:

|       | SMAW GMAW FCAW |             | SAW<br>Wire + Flux |                 |
|-------|----------------|-------------|--------------------|-----------------|
| A\A/C | A5 - 5         | A5 - 18     | A5 - 20            | A5 - 17         |
| AWS   | E 70 xx        | ER 70 S - x | E 7xT5 - x         | F7P4 - Exxx     |
| - LN  | EN 499         | EN 440      | EN 758             | EN 756 / EN 760 |
| EN    | E 42 X X X H5  | G 42 X X    | T 42 X X H5        | S 42 X X        |

A non - exclusive list of suitable filler materials is given hereafter:

|          | CMANN                      | CAAAW        |                 | SA                    | .W        |
|----------|----------------------------|--------------|-----------------|-----------------------|-----------|
|          | SMAW                       | GMAW         | FCAW            | Wire                  | Flux      |
| BÖHLER   | Fox Ev 50                  | EM K7        |                 | EM S3                 |           |
| ESAB     | ESAB OK 48.00 (            |              | OK 15.00        | OK 15.00S             | OK 10.71  |
| LINCOLN  | .N Excalibur 7018 SuperArc |              | Outershield 75C | Lincolnweld<br>L - 56 | 880M      |
| OERLIKON | TENACITO                   | CARBOFIL 1   | FLUXOFIL 31     | OE - S3               | OP122     |
| SAF      | SAFDRY 58                  | NERTALIC 70A | SAFDUAL 200     | AS 36                 | AS 462    |
| T - PUT  | Phoenix SH G K 70          | Union K56    | Union BA70      | Union S3              | UV 421 TT |

This list of filler materials has been determined according to suppliers' data. Please confirm this choice with your supplier.

# **APPLICATIONS**

CarElso™ 70 HIC is suitable for pressure vessels where H<sub>2</sub>S is present, such as processing equipment in the oil and gas industry. This grade complies with all major materials specifications for materials for sour service.

## Valéry Ngomo

**Tel.** +33 4 77 75 21 04

valery.ngomo@arcelormittal.com

#### **Patrick Toussaint**

**Tel.** +32 71 44 16 27

patrick.toussaint@arcelormittal.com

http://industeel.arcelormittal.com

# **YOUR CONTACTS**

# **Industeel France**

Châteauneuf Plant - BP 368

F - 42803 Rive de Gier Cedex

### **Industeel Belgium**

266, rue de Châtelet

B - 6030 Marchienne-au-Pont

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.