

ISOTROP

ISOTROP: Hot work tool steel for die casting dies

ISOTROP is a hot work tool steel, developed by Industeel to offer a cost efficient alternative to ESR grades in the die casting die industry.

ISOTROP is produced through a unique and original solidification process developed by Industeel ensuring a good structural homogeneity of forged blocks.

It exhibits improved properties such as a very high level of toughness and high resistance to heat checking. It is very well adapted to ensure extended life time of aluminium or magnesium die casting dies: long production runs, pressure casting, water cooled elements...

ISOTROP meets most International technical standards governing die casting applications (NADCA, CNOMO, SEP).

PROPERTIES

STANDARDS

- > W1.2343 mod, X37CrMoV5.1 mod, AISI H11 mod, SKD6 mod
- > W1.2344 mod, X40CrMoV5.1 mod, AISI H13 mod, SKD61 mod
- > Meets requirements of NADCA # 207-2017grade F
- > Meets requirements of SEP1614 / VDG M82
- > Meets requirements of CNOMO E 01.17.221.N

STEELMAKING PROCESS

Electric Arc Furnace / VAD + unique Industeel solidification process. Although **ISOTROP** is not produced through ESR / VAR process, it meets very similar properties as ESR/VAR products (toughness, microstructure,...)

CHEMICAL ANALYSIS WEIGHT %

Typical heat analysis of ISOTROP

	С	S		Si	Mn	Cr	Мо	V
Typical value	0.36	0.001	0.010	0.30	0.40	5.10	1.40	0.35
Guaranteed	0.34	0.002	0.012	0.25	0.30	4.90	1.30	0.30
value	0.39	max.	max.	0.40	0.50	5.40	1.50	0.45

	PROPERTIES
CLEANLINESS	
Maximum values of ISOTROP	

			С	D
ASTM E45 (A method)	0.5 (t & h)	1.5(t) 1.0(h)	0.5 (t & h)	1.5(t) 1.0(h)

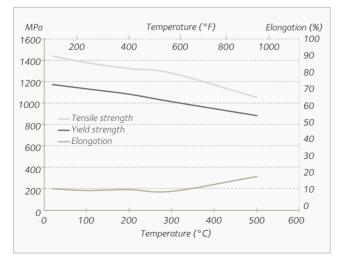
PHYSICAL PROPERTIES

Typical values of ISOTROP

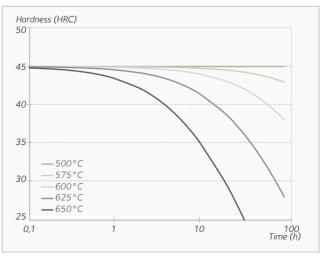
Tempe	erature	Der	nsity	Modulus of	felasticity	Coefficient expe		Thermal o	conductivity
°C	°F	kg.m⁻³	lbs.in⁻³	N.mm ⁻²	psi	°C ⁻¹ from 20°C	°F⁻¹ from 68°F	W.m⁻¹.°C⁻¹	Btu.in.h ⁻¹ .°F ⁻¹
20	68	7800	0.281	205 000	29,7.10 ⁶	Х	Х	28	194
400	750	7700	0.277	177 000	25,7.10 ⁶	12,6.10 ⁻⁶	7,0.10-6	30	208
800	1470	7540	0.273	127 000	18,4.10 ⁶	13,8.10 ⁻⁶	7,6.10-6	33	229

SOUNDNESS / UT GUARANTEE

All plates & blocks are 100% UT tested and meet following standards:


- > Euronorm EN 10228-3 class 4
- > ASTM A681 S1.1
- > SEP1921 E/e

MECHANICAL PROPERTIES


ISOTROP is delivered in soft annealed condition (hardness \leq 229 HB – 20 HRC). It has to be hardened after roughing. Typical values of ISOTROP after hardening

Hardness	Yield strength (Rp0,2)		Ultimate tensile strength (Rm)		Elongation (E)	Réduction of area (Z)
HRC	N.mm ⁻²	psi	N.mm ⁻²	psi		
44	1180	171 000	1440	208 000	13	55
48	1370	199 000	1600	232 000	12	53
52	1560	226 000	1830	265 000	12	52

HOT TENSILE PROPERTIES

SOFTENING RESISTANCE

PROPERTIES

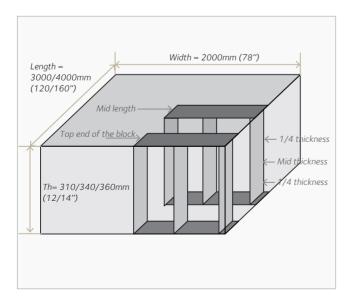
ANNEALED MICROSTRUCTURE / BANDING SEGREGATION

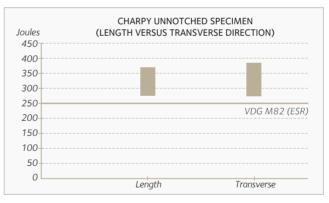
ISOTROP meets structural requirements of following standards: SEP 1614 Premium quality / NADCA #207 - 2017. Typical microstructure of ISOTROP in delivery condition (thickness 250 mm / top / mid thickness)

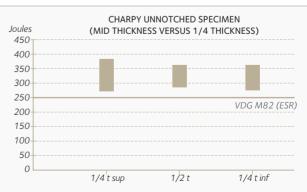
(NADCA # 207-2017) SA3 (SEP 1614)

X500: AS5/AS6 (NADCA # 207-20117 GB2/GC1 (SEP 1614)

TOUGHNESS

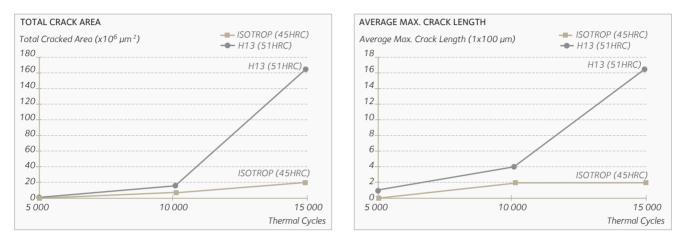

Toughness / high impact properties are necessary to minimize the risk of premature failure of dies. ISOTROP exhibits impact test results very similar to those of ESR grades.


Typical impact properties


Typical impact propertiesTypical Values
(average of 3 specimen)RequirementsToughness measurement at room
temperature on samples prehardened
at 45 HRC.NADCA #207-2017
(E & F)VDG M82Charpy V Notch (*)ft.lb J15 to 21
20 to 28 ≥ 14
 ≥ 19 Charpy unnotched (**)J275 to 385 $\geq 200J$ (standard)
 $\geq 250J$ (premium)

Statistical evaluation of ISOTROP toughness

Performed on 3 blocks 300 mm / 340 mm / 360 mm - 12" / 13" / 14" sampling in 18 different locations of each blocks, longitudinal and transverse direction



Impact to Typical i

PROPERTIES

THERMAL FATIGUE

Dunker test performed on ISOTROP (45 HRC) versus H13 (51 HRC) by Case Western Reserve University / Cleveland Ohio

DELIVERY CONDITIONS

DIMENSIONAL PROGRAM

	Thickness	Width
	60 to 360 mm	Up to 2000 mm
ISOTROP	(2.36 to 14.1")	(78")

For specific dimensions, please contact us.

PLATE PROCESSING

HEAT TREATMENT

ISOTROP is delivered in a soft annealed condition for easier machining. When machining is completed, ISOTROP can be hardened with a heat treatment procedure including preheating, austenitization, quenching and double tempering.

Heat treatment should be done under vacuum or under gas protection to avoid surface oxidation and decarburization. Surface and core temperature (Ts/Tc) should be controlled by thermocouples.

Preheating

Heating rate should be limited to $220 \degree C$ /h ($400 \degree F$ /h), measured in the core of cavity. First preheating has to be done at Ts≈620°C (1150°F) and hold until

Ts-Tc < 110°C (200°F) Second preheating has to be done at Ts \approx 830°(1530°F) and hold until Ts-Tc < 15°C (25°F).

Austenitization

After second preheating, austenitization should be rapidly increased up to 1030°C (1885°F) and hold 30 mn after Ts-Tc < 15°C (25°F). In any case, soaking time shall never exceed 90 mn max after Ts reaches 1030°C (1885°F).

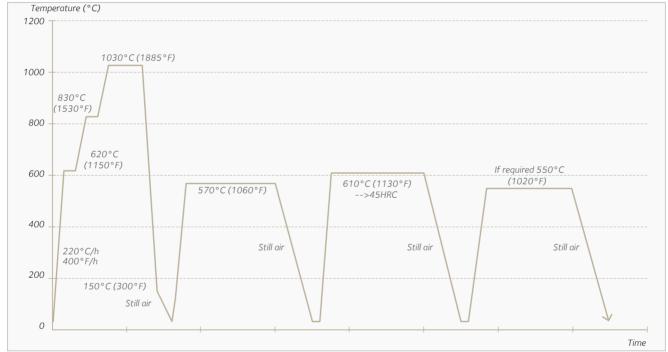
Quenching

Quenching shall be performed in oil or pressurized gas. Pressurized gas should be preferred when quenching complex shapes. Fast cooling has to be applied from austenitization temperature down to 150°C (300°F) Cooling rate, measured at the surface of the cavity, must be at least 30°C/min (55°F/min) between austenitization temperature and 530°C (990°F) To limit stresses, a special attention shall be paid at the temperature difference between surface and core. Especially in the temperature range 400/450°C (750/840°F), the temperature difference between surface and core shall not exceed 100°C (180°F).

Below 150° C (300° F), cavity should be air cooled to $50/80^{\circ}$ C and should then be immediately loaded in a furnace to perform a first tempering.

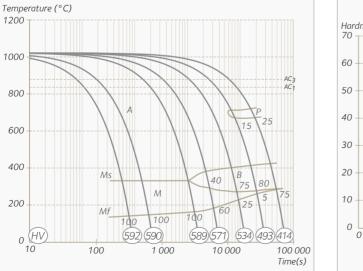
Tempering

A minimum of 2 tempering should be performed on ISOTROP immediately after quenching. First tempering should be done at 570°C (1060°F) Second tempering shall be performed at a temperature depending on required temperature (see tempering curve below).


For a required hardness of 45HRC, second tempering should be performed at 610°C (1130°F)

In both cases, tempering temperature should be hold 2 hours minimum or 30mn per 25 mm of thickness (30mn/inch).

After tempering pieces should be air cooled to room temperature.


When a third tempering is required, it should be done at 550 °C (1020 °F).

HARDENING CHART

Tempering curve

NITRIDING

Typical properties of nitrided layers depending on processes and parameters

Process	Temperature (°C -°F)	Time (h)	Depth	Compound layer (µm)	Hardness (HV1)
		25	0.2 mm	[4·6]	[1072;1090]
Cac pitriding	520°C	25	0.00787 inch.	[4;6]	
Gas nitriding	970°F	FO	0.35 mm	[11.1.0]	[1029;1091]
		50	0.01377 inch.	[11;16]	
Diagna nitridina	520°C	1 Г	0.1 mm	0	[1045;1065]
Plasma nitriding	970°F	15	0.00393	0	

MACHINING

In soft annealed condition

MILLING (with Carbide)					
Parameters	and tools	Isotrop: 160 HB			
Falameters		Rough	Fine		
Cutting	m/min ft/	[140;180]	[180;220]		
speed (V _c)	min	[459;590]	[590;721]		
Depth of	mm	[2;4]	[0;2]		
cut (a _p)	inch	[0.079;0.157]	[0;0.079]		
Feed (fz)	mm/min	[0.2;0.4]	[0.1;0.2]		
	inch/tooth	[0.079;0.0157]	[0.0039,0.0079]		
Carbide	ISO	[P20;P40]	P10		
désignation	US	[C6;C5]*	C7**		

	TURNING (with Carbide)					
Parameters	and tools	Isotrop: 160 HB				
Farameters		Rough	Fine			
Cutting	m/min ft/	[140;200]	[200;250]			
speed (V _c)	min	[459;565]	[656;820]			
Depth of	mm	[2;4]	[0,5;1,5]			
cut (a _p)	inch	[0.079;0.157]	[0.020;0.039]			
Feed (fz)	mm/rev	[0.2;0.4]	[0.05;0.2]			
	inch/rev	[0.0079;0.0157]	[0.0020;0.0079]			
Carbide	ISO	[P20;P30]	P10			
désignation	US	[C6;C5]*	C7**			

* coated carbide

** coated carbide or cermet

In hardened condition

MILLING (with Carbide)					
Parameters	and tools	Isotrop: 43-45 HRC			
Farameters		Rough	Fine		
Cutting	m/min ft/	[45;90]	[90;140]		
speed (V _c)	min	[148;295]	[295;459]		
Depth of	mm	[2;4]	[0;2]		
cut (a _p)	inch	[0.079;0.157]	[0;0.079]		
Feed (fz)	mm/min	[0.2;0.4]	[0.1;0.2]		
	inch/tooth	[0.0079;0.0157]	[0.0039;0.0079]		
Carbide	ISO	[P20;P40]	P10		
désignation	US	[C6;C5]*	C7**		

* coated carbide

** coated carbide or cermet

* coated carbide

** coated carbide or mixed ceramic

TURNING (with Carbide)					
Parameters	and tools	Isotrop: 4	3-45 HRC		
		Rough	Fine		
Cutting	m/min ft/	[35;60]	[70;90]		
speed (V _c)	min	[115;197]	[230;295]		
Depth of	mm	[1;2]	[0,5;1]		
cut (a _p)	inch	[0.039;0.079]	[0.020;0.039]		
Feed (fz)	mm/rev	[0.2;0.4]	[0.05;0.2]		
	inch/rev	[0.039;0.079]	[0.0079;0.0157]		
Carbide	ISO	[P20;P30]	P10		
désignation	US	[C6;C5]*	C7**		

* coated carbide

** coated carbide or mixed ceramic

WELD REPAIR

WELDING				
Method	TIG	MMA		
Preheating	320-380°C / 610 - 710°F			
Limit of Interpass température	480°C	- 900°F		
Filler material	AISI H11			
Post welding cooling	30°C - 54°F/h max during 3 hours			
Post welding Heat Treatment in hardened condition	600°C - 1H / 25 mm 1110°F - 1H /inch			
Post welding Heat Treatment in annealed condition	850°C - 1560°F/30 mn per 25 mm - per inch + cooling at 5°C - 9°F/h until 620°C - 1150°F and air cooling			

Perrine Lavalley Tel. +33 3 85 80 52 56 perrine.lavalley@arcelormittal.com

http://industeel.arcelormittal.com

YOUR CONTACTS

Industeel France Le Creusot Plant 56 rue Clemenceau F-71202 Le Creusot Cedex

Technical data and information are to the best of our knowledge at the time of printing. However, they may be subject to some slight variations due to our ongoing research programme on steels. Therefore, we suggest that information be verified at time of enquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here are only for the purpose of description, and considered as guarantees when written formal approval has been delivered by our company. Further information may be obtained from the address opposite.